DOI QR코드

DOI QR Code

Development and Comparison of Data Mining-based Prediction Models of Building Fire Probability

  • Received : 2018.05.22
  • Accepted : 2018.09.27
  • Published : 2018.12.31

Abstract

A lot of manpower and budgets are being used to prevent fires, and only a small portion of the data generated during this process is used for disaster prevention activities. This study develops a prediction model of fire occurrence probability based on data mining in order to more actively use these data for disaster prevention activities. For this purpose, variables for predicting fire occurrence probability of various buildings were selected and data of construction administrative system, national fire information system, and Korea Fire Insurance Association were collected and integrated data set was constructed. After appropriate data cleansing and preprocessing, various data mining methodologies such as artificial neural network, decision trees, SVM, and Naive Bayesian were used to develop a prediction model of the fire occurrence probability of buildings. The most accurate model among the derived models is Linear SVM model which shows 68.42% as experimental data and 63.54% as verification data and it is the best model to predict fire occurrence probability of buildings. As this study develops the prediction model which uses only the set values of the specific ranges, future studies may explore more opportunites to use various setting values not shown in this study.

Keywords

OTJBCD_2018_v19n6_101_f0001.png 이미지

(Figure 1) ANN Architecture

OTJBCD_2018_v19n6_101_f0002.png 이미지

(Figure 2) Development process of fire probability prediction model

(Table 1) Candidate variables derived using previous studies

OTJBCD_2018_v19n6_101_t0001.png 이미지

(Table 2) EAIS Data

OTJBCD_2018_v19n6_101_t0002.png 이미지

(Table 3) NFDS Collection Data

OTJBCD_2018_v19n6_101_t0003.png 이미지

(Table 4) KFPA Collection Data

OTJBCD_2018_v19n6_101_t0004.png 이미지

(Table 5) List of variables in Data

OTJBCD_2018_v19n6_101_t0005.png 이미지

(Table 6) List of final variables for predicting fire occurrence probability

OTJBCD_2018_v19n6_101_t0006.png 이미지

(Table 7) Neural Networks Model Result

OTJBCD_2018_v19n6_101_t0007.png 이미지

(Table 8) Decision Model Result

OTJBCD_2018_v19n6_101_t0008.png 이미지

(Table 9) Linear SVM Model Result

OTJBCD_2018_v19n6_101_t0009.png 이미지

(Table 10) RBF SVM Tune Result

OTJBCD_2018_v19n6_101_t0010.png 이미지

(Table 11) RBF SVM Model Result

OTJBCD_2018_v19n6_101_t0011.png 이미지

(Table 12) Nive Bayes Model Result

OTJBCD_2018_v19n6_101_t0012.png 이미지

(Table 13) Fire Risk Prediction Result

OTJBCD_2018_v19n6_101_t0013.png 이미지

References

  1. Ministry of Public Safety and Security ,"Analysis results of fire occurrence in 2015", 2016. http://www.nfds.go.kr/sb2_bord_0005.jsf?p_surl=http%3A%2F%2Fwww.nfds.go.kr%2Fsb2_bord_0001.jsf%3Ftp%3Df%5E%5EiPage%3D2&iPage=&tp=f&docno=53375&pGubun=0&pSearch=>
  2. W. I. Choi, Y. S. Kim, D. W. Jang, G. H. Kim, Y. S. Jung "A Study on Development of Fire Risk Prediction Model in Manufacturing Facilities Using Artificial Neural Network" Journal of Korean Society of Hazard Mitigation Vol. 17 No. 1 2017.02. http://dx.doi.org/10.9798/KOSHAM.2017.17.1.161
  3. J. Y. Jang, H. J. Kim, S. K. Lee "A Study on Development of Fire Risk Prediction Model", Hansung University 2008. http://prism.go.kr/homepage/entire/retrieveEntireDetail.do;jsessionid=E5970982E059827F7FC6B8AAAE4FDAE7.node02?cond_research_name=&cond_research_start_date=&cond_research_end_date=&research_id=1660000-200800012&pageIndex=2510&leftMenuLevel=160
  4. W. G. Kim, etc, "Assessment of fire risk index of multi-use facilities, National Security Agency, 2009.08
  5. Jesse Roman, "Data driven information and the brave new world of smart firefighing", NFPA Journal, 2014. Dec. https://www.nfpa.org/-/media/Files/News-and-Research/Resources/Research-Foundation/Current-projects/Smart-FF/SmartFFNFPAJournalDataDriven.ashx?la=en
  6. J. D. Shin, S. H. Jeong, M. S. Kim, H. J. Kim "Analysis of Fire Risk with Building Use Type Using Statistical Data", Journal of Korean Society of Hazard Mitigation Vol. 12 No. 4 2012.08. http://dx.doi.org/10.9798/KOSHAM.2012.12.4.107
  7. H. C. Ahn, K. J. Kim, I. G. Han "Purchase Prediction Model using the Support Vector Machine" Journal of Intelligence and Information Systems Vol. 11 No. 3 2005.12. http://hdl.handle.net/10203/22396
  8. Y. C. Kim, W. S. Yoo, Y. S. Shin "Application of Artificial Neural Networks to Prediction of Construction Safety Accidents" Journal of Korean Society of Hazard Mitigation Vol. 17 No. 1 2017.02. https://dx.doi.org/10.9798/KOSHAM.2017.17.1.7
  9. D. Y. Kwon, Nasim Sobhani, S. Y. Park, J. S. Park, M. Lee "Colorectal cancer recurrence prediction using artificial neural network" The Institute of Electronics and Information Engineers pp. 95-97 2017.11. http://www.dbpia.co.kr/Article/NODE07276224
  10. S. H. Kwon, K. W. Park, B. H. Chang "A Comparison of Predicting Movie Success between Artificial Neural Network and Decision Tree" Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology Vol. 7 No. 4 pp. 593-601 2017.04. http://dx.doi.org/10.14257/AJMAHS.2017.04.37
  11. W. I. Park, K. H. Kim, E. Han, S. M Park, I. S. Yun "Study on the Characteristics of Bus Traffic Accidents by Types Using the Decision Tree" Int. J. Highw. Eng Vol. 18 No. 5 pp. 105-115 2016.10. http://dx.doi.org/10.7855/IJHE.2016.18.5.105
  12. D. W. Lee, J. H. Son, K. W. Gwon "An Analysis on the Prediction Factor of School-Violence: Focused on Datamining Decision Tree Model" Journal of Policy Evaluation & Management Vol. 26 No. 2 pp. 95-125 2016. http://www.kapae.kr/bbs/board.php?bo_table=search_paper&wr_id=1144
  13. H. S. Kang, Y. S. Lee, "Support Vector Machines-based classification of video data". Korea Academy Industrial Cooperation Society Academic Conference Materials, pp. 482-485, Korea Academy Industrial Cooperation Society, 2014.11. http://dx.doi.org/10.5762/KAIS.2015.16.1.652
  14. H. R. Jung, H. H. Kim, S. M. Park, E. Han, K. H. Kim, I. S. Yun "Prediction of Severities of Rental Car Traffic Accidents using Naive Bayes Big Data Classifier" J. Korea Inst. Intell. Transp. Syst Vol. 16 No. 4 pp. 01-12 2017.08. http://dx.doi.org/10.12815/kits.2017.16.4.01
  15. Y. J. Ju, B. S. Kim, J. H. Shin, "Detection of Malicious Code using Association Rule Mining and Naive Bayes classification" Journal of Korea Multimedia Society Vol. 20 No. 11 pp. 1759-1767 2017.11 http://dx.doi.org/10.9717/kmms.2017.20.11.1759
  16. M. J. Lim, J. P. Jung, M. G. Kim, "A Study on Sex Classification of a Name using Naive Bayesian" The Journal of The Institute of Internet, Broadcasting and Communication Vol. 13 No. 6 2013.12. http://dx.doi.org/10.7236/JIIBC.2013.13.6.155
  17. J. M. Choi, B. S. Lee, "eCRM Agent System for Articles Automatic Classification System based on Naive Bayesian Classifier" Journal of IKEEE Vol. 8 No. 2 pp. 216-223 2004.12. http://www.dbpia.co.kr/Article/NODE07015300

Cited by

  1. Improved Slow Charge Scheme for non-communication Electric Vehiclesby Predicting Charge Demand vol.21, pp.5, 2018, https://doi.org/10.7472/jksii.2020.21.5.39