(그림 1) 폐색 문제[1, 2] (Figure 1) The problem of occlusion
(그림 2) RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정의 개요 (Figure 2) The overview of 3D human Pose Estimation based on 2D Keypoint Detection using RGB-D information
(그림 3) RGB-D 정보 기반 객체 탐지 (Figure 3) Object Detection based on RGB-D information
(그림 4) 2차원 키포인트 탐지를 위한 컨볼루션 신경망 구조[16] (Figure 4) The structure of Convolutional Neural Network for 2D Keypoint Detection
(그림 5) 스켈레톤 모델 (Figure 5) Skeleton Model
(그림 6) 3차원 인간 자세 추정을 위한 심층 신경망 구조[14] (Figure 6) The structure of Deep Neural Network for 3D Human Pose Estimation
(그림 7) 신뢰 분포도 (Figure 7) Distribution plot of belief
(그림 8) 3차원 인간 자세 추정 (Figure 8) 3D Human Pose Estimation
(그림 9) 객체 탐지 결과 비교 (Figure 9) Comparison of Results of Object Detection
(그림 10) Human3.6M 데이터 세트를 이용한 3차원 인간 자세 추정 결과 (Figure 10) The result of 3D Human Pose Estimation using Human3.6M dataset
(표 1) 실험 환경 (Table 1) Experimental Environments
(표 2) Human3.6M 데이터 세트[6]를 이용한 3차원 인간 자세 추정 결과 비교 (관절 위치 오류 당 평균) (Table 2) Comparison of results of 3D Human Pose Estimation using Human3.6M (MPJPE)
References
- Seohee Park, Myunggeun Ji, and Junchul Chun, "2D Human Pose Estimation based on Object Detection using RGB-D information", KSII Transactions on Internet & Information Systems, Vol. 12, No. 2, pp. 800-816, 2018. https://doi.org/10.3837/tiis.2018.02.015
- Ramakrishna, Varun, Takeo Kanade, and Yaser Sheikh, "Reconstructing 3d human pose from 2d image landmarks", European conference on computer vision. Springer, Berlin, Heidelberg, pp. 573-586, 2012. https://doi.org/10.1007/978-3-642-33765-9_41
- Parekh, Himani S., Darshak G. Thakore, and Udesang K. Jaliya, "A survey on object detection and tracking methods", International Journal of Innovative Research in Computer and Communication Engineering, Vol. 2, No. 2, pp. 2970-2978, 2014. http://www.ijircce.com/upload/2014/february/7J_A%20S urvey.pdf
- Zivkovic, Zoran, "Improved adaptive Gaussian mixture model for background subtraction", Pattern Recognition, 2004. https://doi.org/10.1109/icpr.2004.1333992
- Hirschmuller, Heiko, "Stereo processing by semiglobal matching and mutual information", IEEE Transactions on pattern analysis and machine intelligence, Vol. 30, No. 2, pp. 328-341, 2008. https://doi.org/10.1109/tpami.2007.1166
- Ionescu, Catalin, et al, "Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments", IEEE transactions on pattern analysis and machine intelligence, Vol. 36, No. 7, pp. 1325-1339, 2014. https://doi.org/10.1109/tpami.2013.248
- Tekin, Bugra, et al, "Direct prediction of 3d body poses from motion compensated sequences", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. https://doi.org/10.1109/cvpr.2016.113
- Chen, Ching-Hang, and Deva Ramanan, "3d human pose estimation = 2d pose estimation + matching", CVPR, Vol. 2, No. 5, 2017. https://doi.org/10.1109/cvpr.2017.610
- Zhou, Xiaowei, et al, "Sparseness meets deepness: 3D human pose estimation from monocular video", Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. https://doi.org/10.1109/cvpr.2016.537
- Du, Yu, et al, "Marker-less 3d human motion capture with monocular image sequence and height-maps", European Conference on Computer Vision. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-46493-0_2
- Park, Sungheon, Jihye Hwang, and Nojun Kwak, "3D human pose estimation using convolutional neural networks with 2D pose information", European Conference on Computer Vision. Springer, Cham, 2016. https://arxiv.org/abs/1608.03075
- Zhou, et al, "Deep kinematic pose regression", European Conference on Computer Vision. Springer, Cham, 2016. https://arxiv.org/abs/1609.05317
- Tome, Denis, Christopher Russell, and Lourdes Agapito, "Lifting from the deep: Convolutional 3d pose estimation from a single image", CVPR 2017 Proceedings, pp. 2500-2509, 2017. https://doi.org/10.1109/cvpr.2017.603
- Martinez, et al, "A simple yet effective baseline for 3d human pose estimation", International Conference on Computer Vision, Vol. 1, No. 2. 2017. https://doi.org/10.1109/iccv.2017.288
- OpenPose: A Real-Time Multi-Person Keypoint Detection and Multi-Threading C++ Library, 2017.
- Wei, Shih-En, et al, "Convolutional pose machines", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016. https://doi.org/10.1109/cvpr.2016.511
- Ramakrishna, Varun, et al, "Pose machines: Articulated pose estimation via inference machines", European Conference on Computer Vision. Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-10605-2_3
- Newell, Alejandro, Kaiyu Yang, and Jia Deng, "Stacked hourglass networks for human pose estimation", European Conference on Computer Vision. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-46484-8_29
- Sigal, Leonid, et al, "Humaneva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion", International journal of computer vision, 2010. https://doi.org/10.1007/s11263-009-0273-6
Cited by
- Empirical Comparison of Deep Learning Networks on Backbone Method of Human Pose Estimation vol.21, pp.5, 2018, https://doi.org/10.7472/jksii.2020.21.5.21