
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 12, Dec. 2018                        6098 
Copyright ⓒ 2018 KSII 

CacheSCDefender: VMM-based 
Comprehensive Framework against 
Cache-based Side-channel Attacks 

 
Chao Yang*, Yunfei Guo, Hongchao Hu, Wenyan Liu 

National Digital Switching System Engineering & Technological Research Center 
Zhengzhou, 450000, China 

[1989600235@qq.com] 
*Corresponding author: Chao Yang 

 
Received July 6, 2017; revised April 22, 2018; revised June 28, 2018; accepted July 15, 2018;  

published December 31, 2018 
 

 

Abstract 
 

Cache-based side-channel attacks have achieved more attention along with the development of 
cloud computing technologies. However, current host-based mitigation methods either 
provide bad compatibility with current cloud infrastructure, or turn out too 
application-specific. Besides, they are defending blindly without any knowledge of on-going 
attacks. In this work, we present CacheSCDefender, a framework that provides a (Virtual 
Machine Monitor) VMM-based comprehensive defense framework against all levels of cache 
attacks. In designing CacheSCDefender, we make three key contributions: (1) an attack-aware 
framework combining our novel dynamic remapping and traditional cache cleansing, which 
provides a comprehensive defense against all three cases of cache attacks that we identify in 
this paper; (2) a new defense method called dynamic remapping which is a developed version 
of random permutation and is able to deal with two cases of cache attacks; (3) formalization 
and quantification of security improvement and performance overhead of our defense, which 
can be applicable to other defense methods. We show that CacheSCDefender is practical for 
deployment in normal virtualized environment, while providing favorable security guarantee 
for virtual machines. 
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1. Introduction 

Popularity and maturity of cloud computing technology brings us with a new form of 
business, such as Amazon’s Elastic Compute Cloud (EC2) [1], Microsoft’s Azure Service 
Platform [2], and Rackspace’s Mosso [3], which provides third-party resources for a wide 
variety of traditional businesses.  In order to maximize utilization of those resources, 
infrastructure in cloud is always serving more than one clients, which leads to popular 
character called multitenancy. While multitenancy realizes improvement of resource 
utilization, it creates a range of new security concerns, of which cache-based side-channel 
attack [4, 5, 6, 7, 8] is one of the most dangerous and developed. This kind of attack occurs due 
to the fact that different virtual machines for clients share different levels of CPU caches, so 
malicious Virtual Machine (VM) achieving co-residency with victim VM gets chance to infer 
sensitive information from it through manipulating the shared cache. 

Accordingly, there are a large number of solutions proposed for defending against 
cache-based side-channel attacks. Most of them can be divided into two types: one requires 
modifying the hardware [9][10], which imposes bad compatibility with current platform; the 
other needs to alter systems [11][12] or vulnerable applications [13, 14, 15], which is too 
specific and cannot be applied widely. There are also some defense methods proposed for 
VMM layer [16, 17, 18, 19, 20], which might influence the operation of normal applications 
[16], or would only defend against a portion of cache attacks [17], or greatly reduce benefits of 
cache sharing [18][19], or would bring too much overhead [20]. Besides, all current works 
defend blindly, thus costing more resources than needed. 

In this paper, we propose a VMM-based comprehensive defense method in order to tackle 
the above shortages of current works. Our method is designed to achieve the following goals: 
 Comprehensive: Our method provides a comprehensive defense against attacks on all 

levels of caches; 
 Compatible and general: We enforce our defense in VMM layer, but not in any 

hardware, OS or application; 
 Attack-aware: Our defense is aware of on-going cache attacks, and scheduled according 

to current circumstance. 
In order to achieve the above goals, we first analyze and divide cache attacks into three 

cases based on level of targeted cache. Upon analysis of each case, we propose dynamic 
remapping, a novel version of traditional random permutation, along with cache cleansing in 
VMM layer to realize a comprehensive defense for all cache attacks. In addition, our defense 
is made attack-aware with detection of on-going cache attacks. The main contributions of this 
paper are as follows: 
 We propose an attack-aware VMM-based comprehensive defense framework with 

combination of dynamic remapping and cache cleansing for all three cases of cache 
attacks which we divide in this paper; 

 We design a new random permutation method called dynamic remapping which 
continues changing mapping relationship from virtual memory to cache to defend against 
two cases of cache attacks; 

 We formalize and quantify each of our defense operations, which is further used to 
facilitate more precise and efficient scheduling of our defense. 



6100                                                                            Chao Yang et al: CacheSCDefender: VMM-based Comprehensive Framework 
against Cache-based Side-channel Attacks 

 We compare our method with one of the current defense methods, and the result indicates 
that our method is far more efficient. 

The rest of this paper is organized as follows: In section 2, we provide an overview of 
related works. In section 3, we briefly introduce the adversary model our method is defending 
against. In section 4, we describe our VMM-based comprehensive defense framework, 
followed by detailed introduction of dynamic remapping in section 5. In section 6, we give 
some formalized security analysis for each of our defense operations. In section 7, we further 
give some quantitative evaluation of our defense. Finally, section 8 concludes this paper. 

2. Related Work 

2.1 Cache 
Due to big gap of access speed between main memory and fast processors, caches, which are 
smaller but faster memories, are designed to reduce the effective memory access time as seen 
by a processor. Modern processors feature a hierarchy of caches. “Higher-level” caches, which 
are closer to the processor cores, are smaller but faster than “lower-level” caches, which are 
closer to main memory. Level-1 (L1) caches, which are typically private high-level caches to 
the processor cores, are usually divided into two types, one of which is data cache while the 
other is instruction cache. Size of a typical L1 cache is 32 KB with a 4-cycle access time, as in 
Intel Core and Xeon families. The last level cache (LLC) is shared among all cores of a CPU 
and is a unified cache storing both data and instructions. Size of LLC measures at level of 
megabytes, and access latency is typically of the order of 40 cycles. Typical modern x86 
processors also support core-private, unified level-2 (L2) caches of intermediate size and 
latency. Any memory access first accesses the L1 cache, and on a miss, the request is sent 
down the hierarchy until it hits in a cache or accesses main memory.  

To exploit spatial locality, caches are organized in fixed-size lines, which are the units of 
allocation and transfer down the cache hierarchy. Size B of a typical line is 64 bytes, and the 
lowest-order 2log B  bits of the address, which is called line offset, are used to locate data 
inside the cache line. Modern caches are usually set-associative, which means that they are 
organized as S sets with W lines in each set. Such caches are called W-way set-associative 
caches. With such cache architecture, memory addresses are used to index these caches. When 
the cache is accessed, the set index field of the address, i.e. bits within 

2 2 2[log , log log 1]B B S+ − , is used to locate a cache set. The remaining high-order bits are used 
as a tag for each cache line. After locating specific cache set, the tag field of the address is 
compared with the tag of the W lines in that set to decide if it is matched. 

2.2 Cache-based Side-channel Attacks 
Cache-based side-channel attacks are originated in 1992 by Hu [21] when cache is considered 
to construct covert channel, and it is not until in 2004 that first practical cache attack [5] is 
carried out. Currently there are two basic forms of cache-based side-channel attacks. One of 
them is called Evict+Time [4], where the attacker first preempts CPU from the victim and 
primes target caches with his own data. Then he gives up the CPU, and measures the time used 
for sensitive operation of the victim. Finally, the attacker can get knowledge of whether 
specific cache sets are used by the sensitive operation through comparing duration time of 
sensitive operation before cache priming and after cache priming.  
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While Evict+Prime achieves poor results as the attacker should know exactly the start and 
the end of sensitive operation, another attack, called Prime+Probe [4], relaxes this restriction. 
To carry out Prime+Probe attack, the attacker should first prime target cache sets, then give up 
the CPU, which is followed by probing the same cache sets to determine whether certain data 
has been evicted from the cache by recording and comparing access time. Since only access 
time of the attacker himself needs to be measured duration priming and probing stages, it 
receives much less influence from the environment, and can therefore be applied in various 
situations [6, 7, 8, 30, 31]. In 2014, Prime+Probe was developed into a more powerful attack 
as Flush+Reload [7], which requires memory deduplication to infer the cache hit and cache 
miss. Basically, the natures of the latter two attacks are the same.  

From then on, cache attacks have been further improved and extended. To bypass defenses 
capitalizing on the reliance of LLC attacks on timers, PRIME+ABORT [32], which utilizes 
the Intel TSX hardware widely available in processors, is immune to most defenses with better 
accuracy and efficiency. Besides, Cesar et al. proposes to take advantage of variable-time 
callers in the program to circumvent defenses based on constant-time callees [33]. 
Furthermore, cache attacks have been implemented on ARM-based mobile devices, such as 
AutoLock [34]. All these cases indicates the trend of wide application of cache attacks, which 
implies that corresponding defenses brooks no delay. 

2.3 Defense against Cache-based Side Channels 
Current defenses against cache-based side-channel attacks can be classified as follows: 
 Host-based defense 

Cache isolation might be the most intuitive method because the essence of cache attacks is 
the sharing of caches. Multiple methods are proposed, including locking cache lines for 
different VMs [12], partitioning caches [10] and separating memory pages according to the 
mapping relationship with caches [19]. The disadvantage is that isolation violates the principle 
of cloud computing and reduce its benefits.  

Varadarajan et al. [17] proposes to control the least time duration that a VM must occupy a 
CPU core, thus cache behaviors will be hindered. Similarly, KeyDrown [35] defend against 
keystroke timing attacks by injecting a lot of fake keystrokes into the kernel, creating an 
uniform distribution of keystroke interrupt. However, it achieves limited defense effect due to 
the popularity of Simultaneous Multithreading (SMT, also called Hyper-threading) of CPU 
core and multi-core architecture. Besides, long waiting time for a VM’s real-time jobs would 
affect interactive operations. 

Zhang et al. proposed in [11] to add noise into cache behavior in order to mix different 
memory access operations. However, just adding noise is not enough since large amount of 
samples are possible to deal with those noises. 

In [16], Vattikonda et al. introduced a method to use coarse-grained timers instead of 
fine-grained ones, thus reduce difference between access time of cache and memory. A similar 
approach is Cloak [36] which utilizes hardware transactional memory to make cache misses 
on sensitive code and data invisible to attackers. These methods might be impractical, because 
it would possibly affect the normal operation of applications, or even systems. 

In [5], Aviram et al. proposed to modify the applications to make execution time as a 
constant. Besides, [15] proposed to dynamically change execution time through dynamic 
software diversity. These methods are limited because a lot of commercial software is not 
open-source. In addition, constant execution time cannot be really achieved due to noise from 
complex operations of application’s execution environment.  
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Among host-based defense random permutation and cache cleansing might be most 
practical. There are two types of random permutation. As is proposed in [22][23], one way to 
realize random permutation is to randomly change virtual memory where sensitive data 
resides. Such a method is good to protect specific application, but would not be widely applied 
since each target application needs to be modified. Another type of random permutation is 
randomizing the mapping from machine address to cache sets [9,10,22], thus making 
information inferred from cache operations cannot reveal the memory access pattern of the 
victim. However, all current works of this type requires new design of hardware, leading to 
bad compatibility with current cloud platforms. To sum up, current works of random 
permutation are facing the following challenges: (1) They are not aiming at the root cause of 
cache attacks, which is cache sharing implemented in VMM layer; (2) They are either 
incompatible with current cloud platforms or too specific to certain application. 

There are also typically two methods of cache cleansing [11][17]: using cache cleansing 
instructions and issuing memory visit. The latter method is implemented by randomly 
selecting memory addresses to issue memory access, changing the content of their 
corresponding caches. Compared with instruction-based method, it has an advantage that it 
can be used in any situation while executing cache cleansing instructions requires high 
privilege that might be forbidden. 
 Migration-based defense 

It is a good choice since it eliminates the underlying reason of cache attacks. However, it is 
still under development because of some migration problems [24], such as migration of 
network configuration and inevitable down time for service. Moreover, it defends blindly as 
all current works, thus wasting many unnecessary resources. 

In light of the above analysis, we propose an attack-aware comprehensive defense 
composed of developed random permutation and cache cleansing. A new kind of random 
permutation which is called dynamic remapping is designed in a way that periodically changes 
mapping relationship from virtual memory to machine memory in VMM layer. Therefore, it 
can deal well with the above two problems of current random permutation. Besides, we utilize 
memory access as the complementary method to dynamic remapping in this paper, and adjust 
it to apply for our defense. At last, our defense operations is dynamically scheduled based on 
detection of on-going cache attacks. 

2.4 Motivating Researches 
Further improvements of our work are motivated by some other researches that focus on 

attack detection and mitigation against traditional cyber threats. For example, Weizhi Meng et 
al. propose the applicability of blockchain to intrusion detection [37] since blockchain can 
protect the integrity of data storage and ensure process transparency. We can use the 
blockchain to enhance the detection capability of HexPADS, which is the main part of Attack 
Detection Module of our proposed framework. To avoid the disadvantages of publickey 
certificates used in the blockchain, Qun Lin et al. construct a new ID-based linear 
homomorphic signature scheme [38], which is proved to be secure against existential forgery 
on adaptively chosen message and ID attack under the random oracle model. In addition, the 
attack detection can be further improved with deep learning [39], which has been proved to be 
effective in other fields such as image processing. At last, since the target of our approach is to 
protect the secret information, our work can be incorporated with modern cryptographic 
solutions [40] which are utilized in the field of cryptology and cyber threat prevention.  
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3. Attack Model and Formalization 
In this section, we describe a general model of cache-based side-channel attacks in public 
clouds that (a) can capture most popular and powerful cache attack prototype as Prime+Probe 
and is easy to apply for other attacks; (b) is independent of specific cache that is under attack. 

3.1 Adversary Goals and Capabilities 
We assume that each VM in cloud has some private information (location of critical code or 
encryption table, etc.) in its memory and relative position of that information inside a memory 
page is fixed and known. The goal of the attacker is to first get the location of visited cache 
during sensitive operation which reflects memory pages it uses since different sets of pages 
cover different ranges of the cache. After that, with offset of sensitive data inside one (or many) 
of those pages, the attacker can further infer the position of all private information in cache, 
which is finally used to deduce critical information (such as encryption key) in target VM. 
Then we will give some capabilities of the attacker. 
 Co-residency and identification: The malicious VM is able to achieve co-residency 

with target VM on the same physical platform and verify its identity [6]; 
 Attacking technology: We assume Prime+Probe attack described in [8], which is very 

powerful and has the widest scope of application than any other types of attacks. 
Flush+Reload may be more powerful but it is limited in the condition of memory sharing 
between the attacker and the victim. It should be pointed out that our method can defeat 
many other types of attacks like Evict+Time and its variations, which we will defend 
against in similar ways; 

 Memory Manipulation: The attacker is able to manipulate memory of his/her own VM 
at will so that he can issue memory operations to access specific cache sets. This is a very 
aggressive assumption which is based on conditions like use of large pages since we are 
now dealing with the most powerful attacker; 

 Knowledge of data location: Previous detection launched by the attacker is able to 
derive the location of sensitive data in cache, thus he/she can get a set of memory pages 
that map to this cache location which includes the one or those that contain sensitive 
information. If data location is changed (by our defense), the attacker only needs to search 
other possible positions that related page would map to instead of the whole cache. 

 
After finding BMU, the SOM codebook vectors are updated, such that the BMU is moved 

closer to the input vector. The topological neighbors of BMU are also treated this way. This 
procedure moves BMU and its topological neighbors towards the sample vectors. The update 
rule for the ith codebook vector is: 

3.2 Level-dependent Cache Data Location Model 
In early work, researches on cache-based side-channel attacks assume that location of 
sensitive data is already known to the attacker which is definitely unreasonable except in the 
case of Flush+Reload attack. The only practical way proposed in recent work [8] is to use 
cache inference operations to deduce the location. In this paper,  we assume that the attacker 
uses Prime+Probe operations to locate the position of target data in cache, and each single 
operation can check whether target data resides in a range of cache positions that mapped by a 
certain set of memory pages. 

For locating sensitive information in cache, we identify level of targeted cache as the key 
factor. Typically, modern processors feature a hierarchy of three-level caches. They are 
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level-1 (L1) cache, level-2 (L2) cache and last level cache (LLC). Different levels of caches 
have different indexing mechanisms, which leaves the attacker with different sizes of search 
spaces to locate cache position of sensitive information. Obviously, there are three cases with 
respect to different levels of caches 
 Search space of L1 cache 

L1caches are usually small enough to be “virtually” indexed, which means that only bits in 
page offset field are enough to index all cache sets. So all pages will map into the same cache 
position, and just single data location operation is enough to ensure the existence of sensitive 
data in cache. 
 Search space of L2 cache 

Indexing L2 cache is very much different since sets of L2 cache is typically more than bits 
of page offset can index. So a page can map to the space indexed by the bits belonging to cache 
indexing bits but outside the range of page offset bits, which is also the search space for the 
attacker 
 Search space of LLC 

Cache set in the LLC is uniquely identified by the slice id and set index. Due to the sliced 
character of LLC, size of the search space might be different from that of unsliced LLC 
because it would depend on the number of slices in addition to the bits between the bits 
belonging to cache indexing bits but outside the range of page offset bits. 

3.3 Formalization of the Model 
We start by presenting some preliminaries as shown in Table 1 below. 
 

Table 1. Notations for formalizing data location model 
Notation Description 

1LN , 2LN , 3LN  
Number of cache sets in L1 and L2 cache per core, as well as L3 cache of all 
cores. There are two types of L1 cache as data cache and instruction cache, 
and   is the sum of them. 

PAGEN  Number of bits used to index page offset. 

LINEN  Number of bits used to index offset in a cache line 

SLICEN  Number of slices in LLC which equals the number of CPU cores. 

1LW , 2LW , 3LW  Associativity of three levels of caches. 

1LT , 2LT , 3LT  Time duration of single data location operation for three levels of caches. 

1LS , 2LS , 3LS  Size of search space for three levels of caches. 

1LA , 2LA , 3LA  Average time used to conduct one by one search for the whole space of 
three levels of caches. 

 
With the above analysis, we can get expressions of the last six notations as in the following: 

 L1 cache-based data location 
Since L1 cache is virtually indexed by page offset, there is only one fixed position in cache 

for sensitive data. So its search space is limited to 1, and average time used for searching the 
whole space is to scan once. Formally, 

1 1LS =      (1) 

1 1L LA T=      (2) 
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 L2 cache-based data location 

In case of L2 cache, bits belonging to cache indexing bits but outside the range of page 
offset bits determine the search space, so the average time used for scanning the search space 
would be half the time used to conduct one by one search over the whole space. Formally, 

2log ( )
2 2 L PAGE LINEN N N

LS − −=           (3) 
2log ( ) 1

2 2 2 L PAGE LINEN N N
L LA T − − −= ×    (4) 

 LLC-based data location 
Calculation of search space and average time for scanning that space for LLC is similar to 

that for L2 cache except that the sliced character should be considered. Formally, 
3

3
log ( )

log ( )
3 2 2

L
PAGE LINE

SLICE L PAGE LINE

N
N N

N N N N
L SLICES N

− −
− −= × =   (5) 

3log ( ) 1
3 3 2 L PAGE LINEN N N

L LA T − − −= ×     (6) 
However, we can find out that size of search space is not influenced by the introduction of 

sliced LLC, indicating that this design is completely not for security concern. 
These above equations indicates a fact that changing the mapping relationship from 

memory address to L2 cache or LLC will introduce a large search space for the attacker to 
locate the sensitive data, which brings large entropy of security for cache users. This motivates 
our design of dynamic remapping. And for L1 cache, other mitigation methods might be used. 

4. Frame Overview 
In this section, we present CacheSCDefender, which combines dynamic remapping and cache 
cleansing to meet the following requirements: 
 It is able to defend against the most powerful cache attacks for all levels of caches; 
 It would not modify any hardware to provide good compatibility with current cloud 

platforms, and would not require much modifications for upper VM systems or 
applications in order to provide good compatibility with current cloud service; 

 It is always aware of the on-going cache attacks and can defend accordingly; 
 Its performance overhead is controllable so that it is practical for deployment in the cloud. 

4.1 Overall Design 
In this part, we provide a high-level overview of the CacheSCDefender framework which 
provides an attack-aware comprehensive solution for cache-based data location attacks we 
discussed in the previous section. Fig. 1 shows the overall architecture of CacheSCDefender. 
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Fig. 1. Architecture overview of CacheSCDefender 

 
Recall that we consider an adversary model that focuses on preparation stage of cache 

attacks which tries to locate sensitive data in cache. Our goal is to provide a mitigation 
mechanism against this threat model while meeting requirements stated at the beginning of 
this section. 

Motivated by random permutation, we come up with an novel version called dynamic 
remapping designed in VMM layer which periodically changing mapping relationship from 
memory address to cache. After remapping, sensitive data resides at another random position 
of cache so that the attacker has to scan the whole search space to regain the location. One 
extreme solution might be using dynamic remapping for cache attacks against all levels of 
caches. 

However, we know from Eq. (1) that search space is so much limited that dynamic 
remapping is definitely inappropriate. Thus we incorporate cache cleansing, a suboptimal 
method to be the supplement. It will clean cache content corresponding to our critical memory 
pages so as to confuse the attacker of data location. Besides, periodic cache cleansing can also 
slow down the attack process for stealing private information [11]. 

Despite all this, we will not substitute cache cleansing for dynamic remapping for the 
following two reasons: (a) Too frequent cleansing of cache would eliminate of performance 
benefits brought by sharing of physical cache; (b) Dynamic remapping is more efficient than 
cache cleansing, a fact that we will prove later in Section 6. 

Therefore, the optimal solution should be to use dynamic remapping for cache attacks 
against L2 cache and LLC, and use cache cleansing for cache attacks against L1 cache. 

4.2 System Modules 
As is shown in Fig. 1, there are four modules designed in hypervisor layer to carry out our 
comprehensive defense. They are Attack Detection Module, Information Collection Module, 
Decision Making Module and Defense Execution Module. 
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 Attack Detection Module 
This module is responsible for checking out whether cache-based side-channel attacks are 

happening, and which level of cache is under attack. Since our focus is not on attack detection, 
we will use the real-time detection system HexPADS mentioned in [25]. Their work is based 
on the observation that attacks will always change the execution behavior of a system, so 
HexPADS detects attacks through divergences from normal behavior using attack signatures. 
The system collects information from the operating system on runtime performance metrics 
with measurements from hardware performance counters for individual processes. Since 
cache behavior is a strong indicator of ongoing side-channel attacks, collecting performance 
metrics across all running processes allows the correlation and detection of these attacks 
almost without false positives or false negatives. The perceived overhead for HexPADS is 
negligible and makes up for less than 1% of CPU time on a single core on a modern system. 

The output of this module is totally delivered to Decision Making Module. 
 Information Collection Module 

This module is responsible for collecting VM’s information. The information includes 
which VMs are requiring our protection, and for those who need protection, we further collect 
information about which pages among them are applied as sensitive. Here we design a client 
API for VMs to apply for security-critical memory they want to protect, and our module is 
responsible for determining sensitive pages which stores these memory contents. In order to 
get security-critical memory for the given sensitive information of users, we design a small 
tool KeyDeLocater to analyze all security-critical codes in user program according to [26] 
which proposes to use data flow analysis to detect all necessary addresses. When the user gets 
all security-critical memory with KeyDeLocater, he should delivers the result to our client API, 
and this module would mark all pages containing these memory as sensitive pages. Of course, 
we limited the number of pages for each VM in case of DoS (Denial of Service) attack by 
malicious users who deliver specially constructed security-critical addresses in try to let the 
system mark as many sensitive pages as possible, thus causing unnecessary defense 
operations. 

The output of this module is partially delivered to Decision Making Module, and also 
partially delivered to initiate or change content of the page table. We will use additional bits in 
page table entry to indicate whether a page is sensitive. 
 Decision Making Module 

In this module, decisions are made about how to carry out the defense method with 
information gathered from the first two modules. Its output will be delivered to Defense 
Execution Module to instruct practical defense operation. 

Our decision making algorithm is an unconditional loop after initializing defense operations 
for all VMs requiring protection. And our initial protection is dynamic remapping as it is more 
effective. 

After that, we enter a loop which is periodically checking the existence of cache-based 
side-channel attacks for each VM, which is realized by Attack Detection Module. When an 
attack is detected, we will reduce the interval for our defense operations. Moreover, we will 
decide which level of cache is under attack for iVM , which is conducted by Information 
Collection Module. For case with L2 cache and LLC attack, we will use dynamic remapping 
even with presence of L1 cache attack because dynamic remapping covers action of cleaning 
cache; for case of only L1 cache attack, we carry out cache cleansing. If multiple consecutive 
detection operations fail to find the existence of cache attacks, we will increase the interval for 
defense operations in order to save resource used for protection. The threshold of this number 
is related to the number of VMs. For the change of interval duration, it is limited to the range of 
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, and it increases and decreased by . In case that the attacker 
might be able to find out  and  which may be helpful to more successful 
attack, we introduce the randomness into change of , and the result could be any 
value between  and . 
 Defense Execution Module 

The responsibility of this module is carrying out practical operations of our defense. It is 
composed of two parts: Dynamic Remapping and Cache Cleansing. Our Cache Cleansing is 
simple, as it just periodically flushes the caches by memory access which is flexible and does 
not require any privileged operations. As described in the decision making algorithm, we 
know that in cases of L1 cache attacks where caches are virtually indexed, cache cleansing is 
used in this case. It is simple since we just need to randomly visit those memory which maps to 
the same cache sets as SPs, as is shown in Fig. 2 below. All cache sets corresponding to those 
SPs should be covered. 

In Fig. 2, the most important module is creating eviction sets which is used to clean cache 
sets related to sensitive pages. The algorithm is simple: for  ( , and  is associativity 
of corresponding cache) memory pages that map to the same cache sets as the sensitive page, 
first randomly select  pages to use their memory blocks corresponding to 1st cache set 
related to the sensitive page, thus creating eviction set 1. Then we randomly select  pages to 
create other eviction sets, until all sets have been created. After that, if we visit all these cache 
sets, cache content related to the sensitive page would be cleaned. 
 

 
Fig. 2. Cache cleansing as defense for L1 cache attack 

 
Instead, dynamic remapping turns out more complicated, as it should not only change the 

items of page tables, but also reconcile all memory related, including exchanging content of 
two memory pages, invalidating caches and TLBs. Nevertheless, dynamic remapping is a 
more effective timely operation, which we will detail in section 6. 

5. VMM-based Dynamic Remapping 
In this section, we will give detailed introduction of dynamic remapping, which is the most 
important component of our defense framework. 

5.1 Basic Conception 
Currently, there are mainly two mechanisms for mapping virtual address in VM to physical 
address in real machine. One is shadow paging based on software simulation, and the other is 
two dimensional page walk with hardware support. No matter which mechanism is used, 
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VMM could only affect the translation to machine address via page tables. We will utilize this 
feature to randomize the mapping relationship at the granularity of memory page. Our basic 
idea is shown in Fig. 3. 
 

 
Fig. 3. Random permutation from machine memory to cache 

 
In this paper, all memory pages (machine frames) of a VM are divided into two types: 

Sensitive Page (SP) which contains sensitive data and Ordinary Page (OP) which only 
contains ordinary data. We will enforce moving target defense on all SPs. For VMM layer, we 
can realize dynamic remapping with the following procedure: 
a) Randomly choose a mapping record for a SP and a mapping record for an OP in the page 

table. The page table can be shadow table in shadow paging mechanism, or p2m (physical 
to machine) table in two-dimensional page walk mechanism. And as we are remapping at 
the granularity of page size, the records should be in L1 page tables which store the 
specific machine frame numbers; 

b) Block visit from VM to these two records and flush TLB; 
c) Exchange two selected items in the page table; 
d) Block visit from VM to machine pages mapped from these two records in the page table; 
e) Exchange the content of these two machine pages; 
f) Visit these two machine pages so as to fill cache with their relative memory content; 
g) Recover the visit from VM to the blocked page table entries and machine pages. 

However, if large page is enabled in the system, and the sensitive information of the victim 
is located in the large page (like 2MB and 1GB), then dynamic remapping would not change 
the cache set range of the sensitive victim buffer, thus rendering the victim defenseless. 
Fortunately, for many applications, the sensitive data is usually in the small size (4KB) pages, 
and therefore dynamic remapping of those pages should be able to effectively prevent the 
identification of security-critical memory area. 

5.2 Formalization 
A defense method can be evaluated from two aspects: the overhead for carrying out the 
defense and the security improvement it brings. In our case, the overhead is mainly about time 
needed for defense operations, including time for dynamic remapping and cache cleansing. In 
regards to defend against information leakage, the security improvement can be described as 
additional cost for the attacker to get the same information due to the defense which can be 
widely applied. Then we have the following definitions: 
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Definition 1. Effect of defense, denoted as EER : minimal additional resource needed to get the 
same information as before due to the defense. In this paper, it refers to additional time used 
for locating sensitive data in cache. 
Definition 2. Effort of defense, denoted as EOR : minimal resource needed for carrying out 
certain defense operation or method. In this paper, it refers to total time used for the defense 
since other resources like memory are negligible. 
Definition 3. Efficiency of defense, denoted as EIR : ratio between the effect of defense and the 
effort of defense. This definition might be the most comprehensive indicator for evaluating the 
defense. 
 

Table 2. Notations for formalized evaluation 
Notation Description 

SPN , OPN , VPN  Numbers of SPs, OPs and VPs of a VM. 

CCT  Time duration of cleaning corresponding cache with associativity of 1LW  to single page. 

CRT  Time duration of changing single item in page table, as well as its corresponding records 
(TLB) in other places except in cache. 

CPT  Time duration of copying content of one page to address of another page. 

RT  Time duration of conducting memory read operation for size of a single cache line. 

CT  Time duration of conducting memory copy operation for size of a single cache line. 

RCT  Time duration of conducting cache read operation for size of a single cache line. 

SOT  Time duration of sensitive operation of the victim between priming stage and probing 
stage of a single Prime+Probe operation. 

 
Besides, we define other factors involved in our defense in the following table. Here we take 

case of defense against LLC attack as an example, and defense against L2 cache attack can be 
viewed in similar way. 

In this paper, effect of defense refers to additional time used for locating sensitive data in 
cache, which is product of the duration of single Prime+Probe operation and times of that 
operations needed. Here we use average time used to conduct one by one search for the whole 
space which is defined in section 2.3 to represent effect of a certain defense. For effort of 
defense, cache cleansing and dynamic remapping bring different expenses. As implied by its 
name, cache cleansing costs the effort of cleaning cache, which means visiting eviction sets of 
target pages. Compared with it, dynamic remapping is much more complicated since its cost is 
composed of the following operations 
 Change items in page table, and flush TLB; 
 Copy content of one page to address of another page; 
 Clean corresponding cache to memory page by issuing memory visit to eviction sets. 

Since there are two records to change, CRT  and CCT  will be doubled. For exchanging 
content of two pages, we use three-step exchange as ‘a→c; b→a; c→b’, so the exchange 
equals three times of copying content of a page to another. Therefore, CPT  is multiplied by 3. 

3 3

1

22 3L L CC
EO CR CP

L

W TR T T
W
×

= + +    (7) 

After dynamic remapping, the attacker has to scan the whole search space to regain the 
location of sensitive data in cache. For each SP, effect of single operation 2SP can be 
expressed as 3log ( ) 1

3 2 L PAGE LINEN N N
LT − − −×  which is shown in Eq. (6).  So the defense effect is: 
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3log ( )-13
32 L PAGE LINEN N NL

EE LR T− −= ×     (8) 
With Eqs. (7) and (8), we can get the efficiency of 2SP operation: 

3log ( )-1
3 3

3 1

2
2 3 (2 ) /

L PAGE LINEN N N
L L
EI

CR CP L CC L

TR
T T W T W

− − ×
=

+ + ×
      (9) 

6. Security Analysis 
In this section, we formally describe security improvement CacheSCDefender brings in each 
case of cache attacks, and then prove our announcement in section 4.1 from the aspect of 
security defense efficiency. At last, we describe how CacheSCDefender deals with smart 
adversaries in several cases. 

6.1 Analysis of Security Improvement 
Here we will give formalized evaluation of our defense in each case. In order to calculate the 
concrete value of effort and effect of our defense, we have to get values of following 6 critical 
variables: 1LT , 2LT , 3LT , CCT , CRT  and CPT . 

As we assume perfect probing ability of the attacker, the attacker needs only to conduct a 
single Prime+Probe operation for scanning a single set, while each operation involves one 
round of W  memory access and one round of W  cache access, as well as one sensitive 
operation of the victim. Here we ignore waiting time of the attacker due to inaccurate 
judgement of the start and the end of sensitive operation. Then we have the following results: 

1 1 1L L R SO L RCT W T T W T= × + + ×      (10) 

2 2 2L L R SO L RCT W T T W T= × + + ×      (11) 

3 3 3L L R SO L RCT W T T W T= × + + ×      (12) 
In our defense, cache cleansing is fulfilled by issuing memory access to eviction sets. In 

order to evict all cache lines of cache sets corresponding to a SP, at least one whole page of the 
eviction sets should be totally accessed. Then CCT can be expressed as: 

1 2 PAGE LINEN N
CC L RT W T−= × ×     (13) 

Eq. (13) means that total time needed for cleaning all cache sets of a SP is product of cache’s 
associativity, number of sets and RT . Besides, with CT  representing the time used for copying a 
memory block which maps to a single cache line, CPT  can then be expressed as: 

=2 PAGE LINEN N
CP CT T− ×              (14) 

With experience, we know that R CT T≈ , meaning that speed of memory reading and that of 
memory copying are very much close. For practical demonstration, we use AIDA64 [27] to 
test reading and copying speed of DDR3 RAM of five randomly selected PCs which are 
shown in the following table. 
 

Table 3. Information of five selected PCs 
Machine CPU 
ThinkCentre M8500t-N0000 QuadCore Intel Core i7-4790, 3.6GHz 
H3060 Intel Core i3 6100, 3.7GHz 
M4000e Intel Core i5 6500, 3.2GHz 
ThinkPad T440  Intel Core i7-4500 U, 1.80GHz 
ThinkPad x201i Inter Core i3 CPU M 380, 2.53GHz 
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Fig. 4. Test of difference between reading and copying speed using AIDA 64 

 
For each PC, we test the memory reading and copying speed for 100 times, and compute the 

ratio between the difference of these two speeds and the larger reading speed, which is shown 
above in Fig. 4. From Fig. 4, we can find that although the reading speed is slightly larger than 
the copying speed, they have tiny difference (all values are less than 1.5%) compared to their 
own value. Therefore, we can assume R CT T≈  in this paper. 

For CRT , we can just ignore it because in the effort of dynamic remapping, number of 
memory operations in CRT  is far less than other operations, so we have CRT << CCT  and 

CRT << CPT . 
At this time, we can get the formalized result of our defense for each case below. 

 Defense for L1 cache attack 
In case of L1 cache attack, our framework uses cache cleansing to hinder location of 

sensitive data, so the security improvement is single operation of scanning for 1LT . With Eq. 
(10) we can get: 

1
1 1

L
EE L R SO L RCR W T T W T= × + + ×         (15) 

Its defense overhead is spent on cleaning cache corresponding to certain sensitive memory 
page as CCT . With Eq. (13) we can get its expression as: 

1
1 2 PAGE LINEN NL

EO L RR W T−= × ×        (16) 
Then we can get its defense efficiency: 

1 1 1

1 2 PAGE LINE

L L R SO L RC
EI N N

L R

W T T W TR
W T−

× + + ×
=

× ×
         (17) 

 Defense for L2 cache attack 
Following the same procedure as in section 5.2, we can get the defense effort and effect of 

the remapping operation. Following Eqs. (7) (8) and (9), we have: 
2

22 (3 2 )PAGE LINEN NL
EO C L RR T W T−≈ + ×            (18) 

2log ( ) 12
2 22 ( )L PAGE LINEN N NL

EE L R SO L RCR W T T W T− − −= × + + ×          (19) 
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2log 2( ) 1
2 2 2

2

2 ( )
3 2

L PAGE LINEN N N
L L R SO L RC
EI

C L R

W T T W TR
T W T

− − − × + + ×
≈

+ ×
          (20) 

 Defense for LLC attack 
With Eqs. (7) (8) and (9), we can change transform the results of section 5.2 into final 

expressions: 
3

32 (3 2 )PAGE LINEN NL
EO C L RR T W T−≈ + ×           (21) 

3log ( ) 13
3 32 ( )L PAGE LINEN N NL

EE L R SO L RCR W T T W T− − −= × + + ×        (22) 
3log 2( ) 1

3 3 3

3

2 ( )
3 2

L PAGE LINEN N N
L L R SO L RC
EI

C L R

W T T W TR
T W T

− − − × + + ×
≈

+ ×
        (23) 

6.2 Comparison of Dynamic Remapping with Cache Cleansing 
With above formalized result in section 6.1, we are able to compare dynamic remapping with 
cache cleansing theoretically in cases that dynamic remapping and cache cleansing can both 
work. We still take LLC attack defense as an example, while L2 cache attack defense can be 
carried out in completely the same way. If we use cache cleansing in LLC attack defense, its 
defense efficiency turns out to be: 

3 3 3

3 2 PAGE LINE

L CC L R SO L RC
EI N N

L R

W T T W TR
W T

−
−

× + + ×
=

× ×
           (24) 

With Eq. (23) and (24), as well as R CT T≈ , we can get that: 
3 3log ( ) 1 log ( ) 13

3
3

3

3

2 2
33 2 2

L PAGE LINE L PAGE LINEN N N N N NL DR
L REI

L CC
EI C L R

L

W TR
R T W T

W

− − − − − −−

−

× ×
≈ ≈

+ × +
  (25) 

In current hardware platforms, we always have 12PAGEN = , 18 6 12
3 2 / 2 2LN ≥ = , 3 4LW ≥  

and 6LINEN = . These conditions also satisfy the case of L2 cache, so the following derivation 
applies for that case. Then with Eq. (25) we can infer that: 

3 12 (12 6) 1

3

2
3 2
4

L DR
EI
L CC
EI

R
R

− − − −

− ≥
+

>>1    (26) 

In case of L2 cache attack defense, we will get the same result. Thus, we have formally 
demonstrated that dynamic remapping is more efficient than cache cleansing. 

7. Evaluation 
In this section, we will first give quantitative values about the effort and effect of each defense 
operation in CacheSCDefender with a comparison between them. Then we will determine the 
defense interval suitable for dynamic remapping and cache cleansing. At last, we will compare 
our method with Düppel [11], an existing defense method using periodic cache cleansing, 
which shows the improvement realized by CacheSCDefender. 

7.1 Evaluation and Comparison of Three Defense Operations 
For experimental setup, we use the above Lenovo ThinkCentre M8500t-N0000 desktop used 
in 6.1 to simulate some of the parameters in our evaluation. Here are some parameters about 
the experimental environment: 
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Table 4. Parameters of experimental environment 
Item Value 
CPU QuadCore Intel Core i7-4790, 3.6GHz  
Number of cores 4 
L1 cache Size:32KB*2*4; Associativity:8 
L2 cache Size:256KB*4; Associativity:8 
L3 cache (or LLC) Size:8192KB; Associativity:16 
Size of cache line 64B 
Speed of reading memory 10025 MB/s 
Speed of copying memory 9916 MB/s 

Speed of reading cache L1:180.61 GB/s; L2:95588 MB/s;  
L3:73173 MB/s 

Based on the above values, we can calculate values of the following two variables: 
( )2064 / 10025* 2 6.08829line

R nsT ==  

( )2064 / 9916* 2 6.1 22= 55line
C sT n=  

From Table 4, we can infer the fact that line
RCT << line

RT , and line
RCT << line

CT . This can be 
explained by the function of cache, which is used to balance the difference of speed between 
main memory and central processor. So we can further ignore line

RCT  in expressions of effort 
and effect of our defense operations in section 6.1. 

For SOT , it is quite different for different sensitive operations. So in this case, we can get the 
quantitative result of our defense in Fig. 8 with variation of SOT . 

Fig. 8(a) shows the change of defense overhead in each case with the change of SOT , Fig. 
8(b) shows the change of security improvement, and Fig. 8(c) shows the change of defense 
efficiency. From Fig. 8(a), we can know that efforts of each defense operation are constant 
with the change of SOT . And L3-DR costs more than L2-DR, while all the two dynamic 
remapping operations cost more than L1-CC. This can be explained that dynamic remapping 
not only conducts memory reading to clean cache which takes the same time as cache 
cleansing, but also spends a lot of time copying memory page and other memory operations, 
which will consume more time. And since dynamic remapping for LLC reads and copies more 
memory than that for L2 cache, L3-DR would definitely more expensive than L2-DR. 
However, even in the most expensive case, single operation L3-DR will only take less than 

132 8192ns= , which would bring tiny influence to routine operation of VMM. It shows that 
our defense is practical for deployment. 
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(c) Changing curve of defense efficiency 

          
Fig. 8. Result of quantitative evaluation for  CacheSCDefender. L1-CC is cache cleansing for L1 cache; 
L2-DR represents dynamic remapping for L2 cache; and L3-DR means dynamic remapping for LLC 

 
 

In Fig. 8(b), we can get that efforts are increasing as SOT  increases. This is due to the fact 
that each Prime+Probe operation needs to wait for end of sensitive operation, and when it takes 
longer time, the attacker has to spend more time completing single operation. We can find out 
that for single operation, L3-DR brings us with most security improvements, while L1-CC still 
brings least benefits. When 302 1SOT ns s= ≈  which is one of common cases, enforcing L3-DR 
will make the attacker spend at least 402 1000ns s≈  to complete locating of only one piece of 
sensitive data, although enforcing L1-CC will cost the attacker at least 302 1ns s≈  to conduct 
the locating job. It indicates that dynamic remapping that we propose in this paper brings us 
with greater security improvement, compared with traditional cache cleansing method 

When comparing all curves in Fig. 8(c), we will find out that L3-DR is most efficient. On 
the contrary, efficiency of operation L1-CC is worst due to the fact it costs cleaning caches of 
a whole memory page but just takes the attacker a single Prime+Probe operation to confirm the 
location. Besides, Fig. 8(c) demonstrates quantitatively that dynamic remapping operations 
are more efficient than cache cleansing. 
 

7.2 Defense Interval 
After evaluation of single defense operation, it is time for working out the interval between 
two defense operations. Since cache cleansing does not change the position of security-critical 
memory, it only affect the size and accuracy of data that the attacker infer from side-channel 
attacks, which is another field of defense. So we just set its operation interval the same as that 
of dynamic remapping. 

Our method of dynamic remapping is designed based on the security game between the 
attacker and the defender. For the attacker, we assume that he uses sequential scanning over all 
possible cache areas to locate positions of security-critical memory. Then we assume that each 
scanning of one certain position for security-critical memory of secret i costs time of it∆ . 
Considering the multi-core architecture, we further assume the ability of scanning il  cache 
positions at the same time during it∆ , and there are totally iL  possible positions. Based on 
these assumptions, we can get that the total time for the attacker to scan the whole cache to 
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identify those for security-critical memory of secret i is i
i i

i

LT t
l

 
= ∆ ×  

 
. If memory is not 

remapped during iT , the correct position would be found before this time. 
Our basic principle is to remap target physical page before this end time. Intuitively, we can 

conduct remapping operation at the time of , ,..., (k 2,3,...)
2 3

i i iT T T
k

= . It is obvious that the 

shorter the time between remapping is, the safer secret i is. However, shorter time means more 
operations of remapping which costs more resource. Hence, we need to balance between 
security and performance. A shorter interval is advised for a lower security level environment, 
while a more secure platform is suitable for a longer interval. So what is best time interval for 
those in an unknown/initial security situation? In order to compare different choices, a new 
indicator Ek

t  showing the effect of defense is proposed in this paper. It is the ratio between 
probability of failure for the attacker’s scanning operations and times of the defender’s 

remapping operations at time t for interval iT
k

. Then it can be express as: 

1( )
E ,

n

k i
t

k
nTk t

n k

−

= =                                (27) 

Here is the reason: When iTt
k

= , if the security-critical memory for secret i is initially 

located in the first 1
k

 part of all possible positions, the attacker is able to locate the memory, so 

success probability is 1
k

. When 2 iTt
k

= , if the security-critical memory for secret i is located 

in the second 1
k

 part of all possible positions after one remapping operation, the attacker is 

able to locate the memory, so success probability is 1 1 1k
k k k

−
+ × . Accordingly, we have 

success probability of 11 1 1 1 1 1... ( ) 1 ( )n nk k k
k k k k k k

−− − −
+ × + + × = −  when inTt

k
= . So failure 

probability is 1( )nk
k
− , with which we can get k

tE . With different k, we compare different 

results at time of t which aligned at the boundary of iT  since all of these options could only be 
comparable at such times, which is shown in Fig. 8 below. 
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Fig. 9. Simulation results of defense when k=2, 3, 4 and 5 

 
Fig. 9 shows how k

tE  changes after remapping for n times of iT  with different k. From Fig. 
9 we can know that at the beginning when remapping is carried out a few times (n is small), a 
smaller k can bring with a larger k

tE , which means more efficient protection. However, it can 
be found that k

tE  of small k decreases faster than that of large k, and when remapping is 
performed more times (n is relatively large, see subfigures in Fig. 9), larger k in turn provides 
more efficient protection. This result indicates that for small number of remapping operations, 
smaller intervals brings with relative worse performance, but turns out better as number of 
operations increases. So we advise a large k for an security-unknown/initial environment, such 
as 16 as a matter of experience. 

Based on the above analysis, we can further set the range [ , ]Interval IntervalMIN MAX  as (0,T ]i . 

[ ]Interval i  can be 
16

iT  as an initial value. When an attack is detected, [ ]Interval i  should be 

decreased. In this paper, it is randomly selected in the range [ , ]( 1,2,...)
1

i i
t

t t

T T k
k k

=
+

 ( i

t

T
k

 is the 

lower bound of current interval as it is in range [ , ]
1

i i

t t

T T
k k −

) in order to prevent the attacker to 

infer the value of [ ]Interval i . When there is no attack found in a time duration of safeT  (24 
hour as in our system), we increase the interval, and randomly select it in range 

[ , ]( 3,4,...)
1 2

i i
t

t t

T T k
k k

=
− −

. 

7.3 Comparison with Existing Method 
We will compare our method with Düppel in this section. Düppel is a cache cleansing system 
developed to defend against cache-based side-channel attacks. It repeatedly cleans the whole 
L1 cache (or per-core L2 cache, if present) alongside the execution of its tenant workload, at a 
pace that it adjusts based upon the possibility with which timings reflecting the workload 
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execution could actually have been observed from another VM. The interval between two 
operations is different in “sentinel mode” and “battle mode”.  

In our experiment, we compare its defense operation with ours for L2 cache because it does 
not involve LLC, and we also use cache cleansing for side-channel attacks on L1 cache. 
Besides, we use the same experimental setup in section 7.1. Since Düppel cleans the whole L2 
cache, its defense overhead is: 

2 2EO
D

L L RR W N T= × ×      (28) 
After cleaning cache, the security improvement is: 

2 2
D
EE L R SO L RCR W T T W T= × + + ×               (29) 

So with Eq. (28) and Eq. (29), we can get the defense efficiency as follows: 
2 2

1 2

D L R SO L RC
EI

L L R

W T T W TR
W N T

× + + ×
=

× ×
          (30) 

Furthermore, we can get the defense overhead, security improvement and defense 
efficiency from section 6.1. Using the experimental environment in 8.1, we can compare these 
three aspects of our method and Düppel with variation of SOT , as is shown in Fig. 10 below. 
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    (a) Changing curve of defense overhead (b) Changing curve of security improvement 
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(c) Changing curve of defense efficiency 

           

Fig. 10. Result of quantitative comparison between CacheSCDefender and Düppel 
 

Fig. 10(a) shows the change of defense overhead in each case with the change of SOT , Fig. 
10(b) shows the change of security improvement, and Fig. 10(c) shows the change of defense 
efficiency. From Fig. 10(a), we can know that efforts of Düppel and CacheSCDefender are 
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constant with the change of SOT , and Düppel obviously costs more than CacheSCDefender. 
This can be explained that Düppel cleans the whole L2 cache while CacheSCDefender 
conducts memory operation just on protected page. In Fig. 10(b), we can get that efforts are 
increasing as SOT  increases. This is due to the fact that each Prime+Probe operation needs to 
wait for end of sensitive operation, and when it takes longer time, the attacker has to spend 
more time completing single operation. We can find out that for single operation, 
CacheSCDefender brings us with more security improvements. When 302 1SOT ns s= ≈  which 
is one of common cases, enforcing CacheSCDefender will make the attacker spend at least 

332 8ns s≈  to complete locating of only one piece of sensitive data, and enforcing Düppel will 
cost the attacker about 302 1ns s≈  to conduct the locating job. It indicates that 
CacheSCDefender brings us with greater security improvement, compared with Düppel. 
When comparing two curves in Fig. 10(c), we will find out that CacheSCDefender is 
definitely more efficient. On the contrary, efficiency of Düppel is much worse due to the fact it 
costs cleaning the whole L2 cache but just takes the attacker a single Prime+Probe operation to 
confirm the location. 

From the above analysis we can find that our method is far more efficient than Düppel in 
preventing cache-based side-channel attacks on L2 cache. 

8. Conclusion 
In this paper, we propose CacheSCDefender, an attack-aware comprehensive VMM-based 

defense framework to defend against all levels of cache attacks. According to which level of 
cache the attacker is targeting at, we divide the attacking scenes into three cases, two of which 
can be handled by dynamic remapping that is a new random permutation method we propose 
in this paper. Since it is not applicable in the third case, we use traditional cache cleansing, a 
less optimal defense as a supplement. Then we formalize our defense overhead and security 
improvement in each case, based on which we provide formal quantitative demonstration for 
that dynamic defense is more effective than cache cleansing, and compare the efficiencies of 
three remapping operations, the latter of which is used for guiding scheduling of dynamic 
remapping. Analytical and experimental results show that our defense is not only 
comprehensive and effective, but also practical for deployment. It should be pointed out that 
our formalization model is the first model to quantitatively evaluate defense method for cache 
attacks, and it can be applied to other cases, such as defense with adding noise and defense 
against other side-channel attacks.  

Of course, we admit that our work is not that perfect. On the one hand, our defense needs 
fine-grained attack detection, while bad resolution of current methods limits their application 
in more precise defense. In order to solve this problem, we may expand our defense to the 
guest’s operating system level where we can interfere with the whole address translation 
process, thus providing move precise protection. On the other hand, our defense does not 
mitigate the basis of side channels, that is, co-residency, which might facilitate other 
side-channel attacks. To this end, we can combine other protection mechanisms such as VM 
migration with our method to provide a comprehensive defense. 
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