References
- Donoho, D., "Compressed sensing," IEEE Transactions on Information Theory, vol.52 no.4, pp. 1289-1306, 2006. https://doi.org/10.1109/TIT.2006.871582
- Candes, E.J., Romberg, J., Tao, T., "Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information," IEEE Transactions on Information Theory, vol.52 no.2, pp. 489-509, 2006. https://doi.org/10.1109/TIT.2005.862083
- Ali, N., et al. "A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF," PLOS ONE, vol.11 no.6, 2016.
- Ashraf, R., et al. "Content Based Image Retrieval Using Embedded Neural Networks with Bandletized Regions," Entropy, vol.17 no.6, pp: 3552-3580, 2015. https://doi.org/10.3390/e17063552
- Ali, N., Bajwa, K.B., Sablatnig R., et al. "Image retrieval by addition of spatial information based on histograms of triangular regions," Computers & Electrical Engineering, vol.54, pp.539-550, 2016. https://doi.org/10.1016/j.compeleceng.2016.04.002
- Minghu, W., Xiuchang, Z. "Distributed Video Compressive Sensing Reconstruction by Adaptive PCA Sparse Basis and Nonlocal Similarity," Ksii Transactions on Internet and Information Systems, vol.8 no.8, pp.2851-2865, 2014. https://doi.org/10.3837/tiis.2014.08.016
- Ashraf, R., Bashir K., Mahmood T., et al. "Content-based Image Retrieval by Exploring Bandletized Regions through Support Vector Machines," Journal of Information Science and Engineering, vol.32, pp.245-269, 2016.
- Ashraf, R., Ahmed, M., Jabbar, S. et al. "Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform," Journal of Medical Systems, vol.42, pp.42-44, 2018. https://doi.org/10.1007/s10916-018-0895-8
- Takhar, D., Laska, J. N., Wakin, M. B., Duarte, M. F., Baron, D., Sarvotham, S., Kelly, K. F., and Baraniuk, R. G., "A new compressive imaging camera architecture using optical-domain compression," International Society for Optics and Photonics in Electronic Imaging, pp. 606509-606509, 2006.
- Duarte, M.F., Davenport, M.A., Takhar, D., Laska, J.N., Sun, T., Kelly, K.F., and Baraniuk, R.G, "Single-pixel imaging via compressive sampling," IEEE Signal Processing Magazine, vol.25 no.2, pp. 83-91, 2008. https://doi.org/10.1109/MSP.2007.914730
- Shen Y., Li S., "Sparse Signals Recovery from Noisy Measurements by Orthogonal Matching Pursuit," Inverse Problems & Imaging. vol.9 no.1, pp.231-238, 2015. https://doi.org/10.3934/ipi.2015.9.231
- Hale, E.T., Yin W., Zhang Y., et al. "Fixed-Point Continuation for L1-Minimization: Methodology and Convergence," Siam Journal on Optimization, vol.19 no.3, pp.1107-1130, 2008. https://doi.org/10.1137/070698920
- Yin, W., Osher, S., Goldfarb, D., and Darbon.J., "Bregman Iterative Algorithms for L1-Minimization with Applications to Compressed Sensing," SIAM Journal on Imaging Sciences, vol.1 no.1, pp. 143-168, 2008. https://doi.org/10.1137/070703983
- Donoho, D. L., Tsaig, Y., Drori, I., and Starck, J.-L., "Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit," IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 1094-1121, 2012. https://doi.org/10.1109/TIT.2011.2173241
- Metzler, C. A., Maleki, A., and Baraniuk, R.G., "From denoising to compressed sensing," IEEE Transactions on Information Theory, vol. 62, no. 9, pp. 5117-5144, 2016. https://doi.org/10.1109/TIT.2016.2556683
- Dong, W., Shi, G., Li, X., Ma, Y., and Huang, F., "Compressive sensing via nonlocal low-rank regularization," IEEE Transactions on Image Processing, vol. 23, no. 8, pp. 3618-3632, 2014. https://doi.org/10.1109/TIP.2014.2329449
- Figueiredo, M.A., Nowak, R.D., Wright S.J., et al. "Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems," IEEE Journal of Selected Topics in Signal Processing, vol.1 no.4, pp.586-597, 2007. https://doi.org/10.1109/JSTSP.2007.910281
- Figueiredo, M. A., and Nowak, R. D., "An em algorithm for wavelet-based image restoration," IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 906-916, 2003. https://doi.org/10.1109/TIP.2003.814255
- Nowak, R. D. and Figueiredo, M. A., "Fast wavelet-based image deconvolution using the em algorithm," in Proc. of IEEE Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 371-375, 2001.
- Li, C., Yin, W., Jiang, H., and Zhang, Y., "An efficient augmented lagrangian method with applications to total variation minimization," Computational Optimization and Applications, vol. 56, no. 3, pp. 507-530, 2013. https://doi.org/10.1007/s10589-013-9576-1
- Wang, Y., Yin, W., and Zhang, Y., "A fast fixed-point algorithm for convex total variation regularization," tech. rep., Working paper, 2007.
- Osher, S., Burger, M., Goldfarb, D., Xu, J., and Yin, W., "An iterative regularization method for total variation-based image restoration," Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 460-489, 2005. https://doi.org/10.1137/040605412
- Cai, J. F., Osher, S., and Shen, Z., "Linearized bregman iterations for compressed sensing," Mathematics of Computation, vol. 78, no. 267, pp. 1515-1536, 2009. https://doi.org/10.1090/S0025-5718-08-02189-3
- Burger, M., Gilboa, G., Osher, S., Xu, J., et al., "Nonlinear inverse scale space methods," Communications in Mathematical Sciences, vol. 4, no. 1, pp. 179-212, 2006. https://doi.org/10.4310/CMS.2006.v4.n1.a7
- Osher, S., Mao, Y., Dong, B., and Yin, W., "Fast linearized bregman iteration for compressive sensing and sparse denoising," Communications in Mathematical Sciences, vol.8 no.1, pp.93-111, 2010. https://doi.org/10.4310/CMS.2010.v8.n1.a6
- Yin, W., Osher, S., Goldfarb, D., and Darbon, J., "Bregman iterative algorithms for L 1-minimization with applications to compressed sensing," SIAM Journal on Imaging Sciences, vol. 1, no. 1, pp. 143-168, 2008. https://doi.org/10.1137/070703983
- Huang, B., Ma, S., and Goldfarb, D., "Accelerated linearized bregman method," Journal of Scientific Computing, vol. 54, no. 2-3, pp. 428-453, 2013. https://doi.org/10.1007/s10915-012-9592-9
- Burger, M., Gilboa, G., Osher, S., Xu, J., et al., "Nonlinear inverse scale space methods," Communications in Mathematical Sciences, vol. 4, no. 1, pp. 179-212, 2006. https://doi.org/10.4310/CMS.2006.v4.n1.a7
- Burger, M., Resmerita, E., and He, L., "Error estimation for bregman iterations and inverse scale space methods in image restoration," Computing, vol. 81, no. 2-3, pp. 109-135, 2007. https://doi.org/10.1007/s00607-007-0245-z
- Burger, M., Moller, M., Benning, M., and Osher, S., "An adaptive inverse scale space method for compressed sensing," Mathematics of Computation, vol. 82, no. 281, pp. 269-299, 2013.
- Ke, J. and Lam, E. Y., "Object reconstruction in block-based compressive imaging," Optics express, vol. 20, no. 20, pp. 22102-22117, 2012. https://doi.org/10.1364/OE.20.022102
- Kerviche, R., Zhu, N., and Ashok, A., "Information-optimal scalable compressive imaging system," Computational Optical Sensing and Imaging CM2D-2, 2014.
- Mahalanobis, A., Shilling, R., Murphy, R., and Muise, R., "Recent results of medium wave infrared compressive sensing," Applied optics, vol. 53, no. 34, pp. 8060-8070, 2014. https://doi.org/10.1364/AO.53.008060
- Wang, J., Gupta, M., and Sankaranarayanan, A. C., "Lisens-a scalable architecture for video compressive sensing," in Proc. of IEEE International Conference on Computational Photography, pp. 1-9, 2015.
- Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P., "Changedetection.net: a new change detection benchmark dataset," in Proc. of Proceedings of the IEEE Computer Vision Pattern Recognition Workshops (CVPRW), IEEE, Boston, pp. 1-8, 2012.
- Foucart, S., "Hard thresholding pursuit: an algorithm for compressive sensing," SIAM Journal on Numerical Analysis. Vol. 49, no. 6, pp.2543-2563, 2011. https://doi.org/10.1137/100806278
- Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P., "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, 2004. https://doi.org/10.1109/TIP.2003.819861