DOI QR코드

DOI QR Code

Coarse Grid Wave Hindcasting in the Yellow Sea Considering the Effect of Tide and Tidal Current

조석 및 조류 효과를 고려한 황해역 광역 파랑 수치모의 실험

  • Chun, Hwusub (Memory Manufacturing Technology Center, Samsung Electronics Co. Ltd.) ;
  • Ahn, Kyungmo (School of Spatial Environment System Engineering, Handong Global University)
  • Received : 2018.11.18
  • Accepted : 2018.12.22
  • Published : 2018.12.31

Abstract

In the present study, wave measurements at KOGA-W01 were analyzed and then the numerical wind waves simulations have been conducted to investigate the characteristics of wind waves in the Yellow sea. According to the present analysis, even though the location of the wave stations are close to the coastal region, the deep water waves are prevailed due to the short fetch length. Chun and Ahn's (2017a, b) numerical model has been extended to the Yellow Sea in this study. The effects of tide and tidal currents should be included in the model to accommodate the distinctive effect of large tidal range and tidal current in the Yellow Sea. The wave hindcasting results were compared with the wave measurements collected KOGA-W01 and Kyeockpo. The comparison shows the reasonable agreements between wave hindcastings and measured data, however the model significantly underestimate the wave period of swell waves from the south due to the narrow computational domain. Despite the poorly prediction in the significant wave period of swell waves which usually have small wave heights, the estimation of the extreme wave height and corresponding wave period shows good agreement with the measurement data.

본 연구에서는 황해역 파랑 특성을 파악하기 위해 KOGA-W01 파랑관측자료를 분석하고, 이를 바탕으로 파랑 후측모의 실험을 수행하였다. 파랑관측자료 분석에 따르면, 파랑관측지점이 연안역에 비교적 가까이 위치해 있음에도 불구하고 fetch length가 짧아 심해파 출현율이 높은 것으로 나타났다. 이에 본 연구에서는 Chun and Ahn(2017a, b)의 계산영역을 황해역으로 확장하여 파랑계산을 수행하였는데, 황해역에서의 정확한 파랑계산을 위해 조석 및 조류의 효과도 함께 고려하였다. 계산결과를 관측결과와 비교하여 파랑 후측모의의 정확도를 검증하였다. 본 연구의 전반적인 계산 결과의 정확도는 만족할 수준이지만, 계산영역 크기 한계로 S계열의 너울성 장주기파를 제대로 재현하지 못해 황해역 유의파주기의 정확도가 낮게 나타났다. 그러나 이들 장주기파의 파랑에너지가 크지 않아, 극치 파랑분석에의 영향은 작아 극치파랑의 유의파주기는 잘 재현하고 있는 것으로 나타났다.

Keywords

References

  1. Chun, J. (2012). 3D numerical model considering wave-current interaction. Ph.D dissertation, Seoul National University.
  2. Chun, J., Ahn, K. and Yoon, J.T. (2008). A study on the extension of WAM for shallow water. Journal of Korean Society of Coastal and Ocean Engineers, 20(2), 148-156 (in Korean).
  3. Chun, H., Ahn, K., Jeong, W.M., Kim, T.-R. and Lee, D.H. (2014). A study on the statistical characteristics and numerical hindcasts of storm waves in East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 26(2), 81-95 (in Korean). https://doi.org/10.9765/KSCOE.2014.26.2.81
  4. Chun, H. and Ahn, K. (2017a). Storm waves on the East coast o Korea: 20 years of wave hindcasting. Journal of Coastal Research, 33(5), 1,182-1,188.
  5. Chun, H. and Ahn, K. (2017b). Wave hindcasting on the storm waves at the Korean straits of April, 2016. Journal of Korean Society of Coastal and Ocean Engineers, 29(1), 36-45 (in Korean). https://doi.org/10.9765/KSCOE.2017.29.1.36
  6. Chun, H. and Suh, K.-D. (2018). Estimation of significant wave period from wave spectrum. Ocean Engineering, 163(1), 609-616. https://doi.org/10.1016/j.oceaneng.2018.06.043
  7. Datawell (2009). Wave unit reference manual. Datawell BV Oceanographic Instruments.
  8. Hasselmann, Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Mueller, P., Olbers, D.J., Richter, K., Sell, W. and Walden, H. (1973). Measurements of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP). Deutsches Hydrographisches, A12, 1-95.
  9. Hwang, S.-M., Oh, H.-M. and Nam, S.-Y. (2018). A study on the characteristics analysis of swell wave accidents and the establishment of countermeasures in the East Sea. Proceeding of the Korea Association of Ocean Science and Technology Societies (in Korean).
  10. Matsumoto, K., Takanezawa, T. and Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. Journal of Oceanography, 56, 567-581. https://doi.org/10.1023/A:1011157212596
  11. Oh, S.-H., Jeong, W.-M. and Kim, S.-I. (2015). Analysis of the observation data for winter-season high waves occurred in the west coast of Korea. Journal of Korean Society of Coastal and Ocean Engineers, 27(3), 168-174 (in Korean). https://doi.org/10.9765/KSCOE.2015.27.3.168
  12. Padilla-Hernandez, R. and Monbaliu, J. (2001). Energy balance of wind waves as a function of the bottom friction formulation. Coastal Engineering, 43(1), 131-148. https://doi.org/10.1016/S0378-3839(01)00010-2
  13. Pilar, P., Guedes Soares, C. and Carretero, J.C. (2008). 44-year wave hindcast for the North East Atlantic European coast. Coastal Engineering, 55(11), 861-871. https://doi.org/10.1016/j.coastaleng.2008.02.027
  14. Shih, H.-J., Chen, H., Liang, T.-Y., Fu, H.-S., Chang, C.-H., Chen, W.-B. and Lin, L.-Y. (2018). Generating potential risk maps for typhoon-induced wave along the coast of Taiwan. Ocean Engineering, 163(1), 1-14. https://doi.org/10.1016/j.oceaneng.2018.05.045
  15. United Kingdom Hydrographic Office (2003). Admiralty tide tables Volume 4. United Kingdom Hydrographic Office.
  16. Warner, J.C., Geyer, W.R. and Lerczak, J.A. (2005). Numerical modeling of an estuary: a comprehensive skill assessment. Journal of Geophysical Research, 110, C05001, doi:10.1029/2004JC002691.
  17. Willmott, C.J. (1981). On the validation of models. Physical Geography, 2(2), 219-232.