Fig. 1. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showing the relationships among isolates belonging to the order Burkholderia sp. OS17 and related taxa.
Fig. 2. Growth, pH (A) and antimicrobial activities (B) of Burkholderia sp. OS17 according to commercial media.
Fig. 3. Growth, pH (A) and antimicrobial activities (B) of Burkholderia sp. OS17 according to culture temperature.
Fig. 4. Growth, pH (A) and antimicrobial activities (B) of Burkholderia sp. OS17 according to initial pH.
Fig. 6. HPLC profiles of Burkholderia sp. OS17 according to commercial media.
Fig. 5. Growth, pH and antimicrobial activities of Burkholderia sp. OS17 according to culture time by 5 L fermenter
Fig. 7. HPLC profiles of Burkholderia sp. OS17 according to culture temperature.
Table 1. Strains obtained from Osang reservoir
참고문헌
- Abdel-Mawgoud AM, Abouwafa MM, and Hassouna NA. 2008. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 150, 305-325. https://doi.org/10.1007/s12010-008-8155-x
- Cartwright DK, Chilton WS, and Benson DM. 1995. Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl. Microbiol. Biotechnol. 43, 211-216. https://doi.org/10.1007/BF00172814
- Farh Mel A, Kim YJ, Van An H, Sukweenadhi J, Singh P, Huq MA, and Yang DC. 2015. Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch. Microbiol. 197, 439-447. https://doi.org/10.1007/s00203-014-1075-y
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Fitch WM. 1971. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20, 406-416. https://doi.org/10.2307/2412116
- Guerra-Santos LH, Kappeli O, and Fiechter A. 1986. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24, 443-448.
- Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95-98.
- Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, and Suzui T. 1989. Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol. Biochem. 21, 723-728. https://doi.org/10.1016/0038-0717(89)90070-9
- Jiao Y, Yoshihara T, Ishikuri S, Uchino H, and Ichihara A. 1996. Structural identification of cepaciamide A, a novel fungitoxic compound from Pseudomonas cepacia D-202. Tetrahedron Lett. 37, 1039-1042. https://doi.org/10.1016/0040-4039(95)02342-9
- Kang Y, Carlson R, Tharpe W, and Schell MA. 1998. Characterization of genes involved in biosynthesis of a novel antibiotic from Burkholderia cepacia BC11 and their role in biological control of Rhizoctonia solani. Appl. Environ. Microbiol. 64, 3939-3947.
- Kirinuki T, Iwanuma K, Suzuki N, Fukami H, and Ueno T. 1977. Altericidins, a complex polypeptide antibiotic, produced by Pseudomonas sp. and their effect for the control of black spot of pear caused by Alternaria kikuchiana Tanaka. Sci. Rep. Fac. Agric.-Kobe Univ. (Japan) 12, 223-230.
- Kumar S, Stecher G, and Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
- Mahenthiralingam E, Song L, Sass A, White J, Wilmot C, Marchbank A, Boaisha O, Paine J, Knight D, and Challis GL. 2011. Enacyloxins are products of an unusual hybrid modular polyketide synthase encoded by a cryptic Burkholderia ambifaria genomic island. Chem. Biol. 18, 665-677. https://doi.org/10.1016/j.chembiol.2011.01.020
- Meyers E, Bisacchi GS, Dean L, Liu WC, Minassian B, Slusarchyk DS, Sykes RB, Tanaka SK, and Trejo W. 1987. Xylocandin: a new complex of antifungal peptides. I. Taxonomy, isolation and biological activity. J. Antibiot. 40, 1515-1519. https://doi.org/10.7164/antibiotics.40.1515
- Moon SS, Kang PM, Park KS, and Kim CH. 1996. Plant growth promoting and fungicidal 4-quinolinones from Pseudomonas cepacia. Phytochemistry 42, 365-368. https://doi.org/10.1016/0031-9422(95)00897-7
- Parker WL, Rathnum ML, Seiner V, Trejo WH, Principe PA, and Sykes RB. 1984. Cepacin A and cepacin B, two new antibiotics produced by Pseudomonas cepacia. J. Antibiot (Tokyo). 37, 431-440. https://doi.org/10.7164/antibiotics.37.431
- Parra-Cota Fl, Pena-Cabriales JJ, de Los Santos-Villalobos S, Martinez-Gallardo NA, and Delano-Frier JP. 2014. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake. PLoS One 9, e88094. https://doi.org/10.1371/journal.pone.0088094
- Quan CS, Zheng W, Liu Q, Ohta Y, and Fan SD. 2006. Isolation and characterization of a novel Burkholderia cepacia with strong antifungal activity against Rhizoctonia solani. Appl. Microbiol. Biotechnol. 72, 1276-1284. https://doi.org/10.1007/s00253-006-0425-3
- Saga T and Yamaguchi K. 2009. History of antimicrobial agents and resistant bacteria. JMAJ 52, 103-108.
- Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
- Suarez-Moreno ZR, Coutinho BG, Mendonca-Previato L, Previato L, James EK, and Venturi V. 2012. Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb. Ecol. 63, 249-266. https://doi.org/10.1007/s00248-011-9929-1
- Tawfik KA, Jeffs P, Bray B, Dubay G, Falkinham JO, Mesbah M, Youssef D, Khalifa S, and Schmidt EW. 2010. Burkholdines 1097 and 1229, potent antifungal peptides from Burkholderia ambifaria 2.2N. Org. Lett. 12, 664-666. https://doi.org/10.1021/ol9029269
- Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, and Higgins DG. 1997. The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. https://doi.org/10.1093/nar/25.24.4876
- Vial L, Lepine F, Milot S, Groleau MC, Dekimpe V, Woods DE, and Deziel E. 2008. Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorumsensing regulation. J. Bacteriol. 190, 5339-5352. https://doi.org/10.1128/JB.00400-08
- Vandamme P, Opelt K, Knochel N, Berg C, Schonmann S, Brandt E, Eberl L, Falsen E, and Berg G. 2007. Burkholderia bryophila sp. nov. and Burkholderia megapolitana sp. nov., moss-associated species with antifungal and plant-growth-promoting properties. Syst. Evol. Microbiol. 57, 2228-2235. https://doi.org/10.1099/ijs.0.65142-0
- Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, and Arakawa M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes, 1981) comb. nov. Microbiol. Immunol. 36, 1251-1275. https://doi.org/10.1111/j.1348-0421.1992.tb02129.x
- Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H, and Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613-1617. https://doi.org/10.1099/ijsem.0.001755