DOI QR코드

DOI QR Code

항공기용 스트링거 제작을 위한 브레이드 복합재료의 물성에 관한 연구

A Study on the Mechanical Properties of Braid Composites for the Manufacture of Aircraft Stringer

  • Eun, Jong Hyun (Department of Fiber System Engineering, Yeungnam University) ;
  • Lee, Joon Suck (Department of Fiber System Engineering, Yeungnam University) ;
  • Park, Seung Hwan (Department of Fiber System Engineering, Yeungnam University) ;
  • Kim, Dong Hyun (Department of Fiber System Engineering, Yeungnam University) ;
  • Chon, Jin Sung (Department of Composite Materials R&D Center, Textile for Life (T4L)) ;
  • Yoo, Ho Wook (Department of Composite Materials R&D Center, Textile for Life (T4L))
  • 투고 : 2017.10.30
  • 심사 : 2018.10.30
  • 발행 : 2018.12.31

초록

본 논문에서는 항공기용 스트링거(Stringer)로 사용하기 위한 브레이드 복합재료(Braided composites)의 물성에 대해 연구하였다. 브레이드 프리폼(braid preform)을 $30^{\circ}$, $45^{\circ}$, $60^{\circ}$로 제작하기 위해 드럼 와인더 속도, 브레이드 속도, 멘드럴 직경과 같은 공정변수들을 정량화시켰고, 에폭시 수지 종류를 TGDDM, YD-128로 브레이드 프리폼에 다르게 적용하여 각도에 따른 브레이드 복합재료의 인장강도, 굽힘강도를 섬유부피분율에 따라 규명하였으며, TGA 분석으로 열적 특성과 에폭시 수지의 분해 온도를 조사하였다. 그 결과 브레이드 프리폼의 각도가 낮을수록 인장강도와 굽힘강도가 향상됨을 확인하였고, 분자량이 높은 에폭시 수지를 사용할 때 물리적 성질이 향상되었다.

In this paper, we have studied the physical properties of braided composites for use as aircraft stringers. Process variables such as drum winder speed, braid velocity, and mandrel diameter for $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$ braid preforms were quantified and different epoxy resin types were applied to the braided preform using TGDDM, YD-128. Physical properties such as tensile strength and flexural strength of braided composites were investigated. Thermal properties and decomposition temperature of epoxy resin were investigated by TGA analysis. As a result, the lower the angle of the braid composites, the higher the tensile strength and the Flexural strength. The physical properties of braided composites fabricated using TGDDM epoxy resin were superior to the physical properties of braided composites fabricated using YD-128 epoxy resin. This is because the molecular weight of TGDDM epoxy resin was higher than that of YD-128 epoxy resin.

키워드

BHJRB9_2018_v31n6_293_f0001.png 이미지

Fig. 1. Manufacturing process schematic diagram of Braid preform and T4L 2D tri-axial braid machine

BHJRB9_2018_v31n6_293_f0002.png 이미지

Fig. 2. Hot press forming equipment

BHJRB9_2018_v31n6_293_f0003.png 이미지

Fig. 3. Tensile test procedure of braided carbon/epoxy composites

BHJRB9_2018_v31n6_293_f0004.png 이미지

Fig. 4. Flexural test procedure of braided carbon/epoxy composites

BHJRB9_2018_v31n6_293_f0005.png 이미지

Fig. 5. Tensile strength of the braided composites

BHJRB9_2018_v31n6_293_f0006.png 이미지

Fig. 6. Flexural strength of the braided composites

BHJRB9_2018_v31n6_293_f0007.png 이미지

Fig. 7. TGA weight loss curves of the braid composites

Table 1. The properties of carbon fiber

BHJRB9_2018_v31n6_293_t0001.png 이미지

Table 2. Chemical structures and M.W of epoxy matrices

BHJRB9_2018_v31n6_293_t0002.png 이미지

Table 3. Braid Preform manufacturing conditions

BHJRB9_2018_v31n6_293_t0003.png 이미지

Table 4. Fiber volume fraction of braided composites

BHJRB9_2018_v31n6_293_t0004.png 이미지

참고문헌

  1. Morgan, P., Carbon Fibers and Their Composites. Boca Raton: Taylor and Francis, New York, U.S, pp. 121-184, 2005.
  2. Roy, S., and Potluri, P., "Braiding: from cordage to composites," The 3rd textile research conference, Dahka, Bangladesh, Oct. 2016, pp. 12-15.
  3. Branscomb, D., Beale, D., and Broughton, R., "New directions in braiding," Journal of Engineered Fibers and Fabrics, Vol. 8, Issue 2, 2013, pp. 11-24.
  4. Salvi, A., "Rate dependent compressive response of 2D tri-axially braided carbon fiber composites and the effects of resin on the interfacial shear strength," Composites Part A, Vol. 40, 2009, pp. 19-27. https://doi.org/10.1016/j.compositesa.2008.09.016
  5. Falzod, P., and Herszberg, I., "Mechanical performance of 2-D braided carbon epoxy composites" Composites Science and Technology, Vol. 3538, 1998, pp. 253-265.
  6. Fedro, M., and Willden, K., "Characterization and manufacture of braided composites for large commercial aircraft structure," NASA CP 3154 - 2nd Advanced Technology Conference, U.S, Sep. 1991, pp. 387-429.
  7. Swanson, S., and Smith, L., "Comparison of the biaxial strength properties of braided and laminated carbon fiber composites." Composites Part B, Vol. 27, Issue 1, 1996, pp. 71-77. https://doi.org/10.1016/1359-8368(95)00008-9
  8. Tate, J., and Kelkar, A., "Stiffness degradation model for biaxial braided composites under fatigue loading," Composites Part B, Vol. 39, Issue 3, 2008, pp. 548-555. https://doi.org/10.1016/j.compositesb.2007.03.001
  9. Zheng, Y., Sun, Y., Li, J., et al. "Tensile response of carbon-aramid hybrid 3D braided composites," Materials and Design, Vol. 116, 2017, pp. 246-252. https://doi.org/10.1016/j.matdes.2016.11.082
  10. Roy, S., and Soutis, C., "A study of quadriaxial and triaxial composites tubes developed by braid winding," International Conference on Composites Materials, Canada, Montreal, 2013, pp. 7895-7903.
  11. Zhou, L., and Zhuang, Z., "Strength analysis of three dimensional braided T-shaped composite structures," Composites Structure, Vol. 104, pp. 162-168. https://doi.org/10.1016/j.compstruct.2013.04.023
  12. Xiao, X., Kia, H., and Gong, X., "Strength prediction of a triaxially braided composite." Composites Part A, Vol. 42, Issue 8, 2011, pp. 1000-1006. https://doi.org/10.1016/j.compositesa.2011.04.003
  13. Zhang, M., Sun, B., and Gu, B., "Accelerated thermal ageing of epoxy resin and 3D carbon fiber/epoxy braided composites," Composites Part A, Vol. 85, 2016, pp. 163-171. https://doi.org/10.1016/j.compositesa.2016.03.028
  14. Uozumi, T., Kito, A., and Yamamoto, T., "CFRP using braided preforms RTM process for aircraft applications," Advanced Composite Materials, Vol. 14, Issue 4, 2005, pp. 365-383. https://doi.org/10.1163/156855105774470366