DOI QR코드

DOI QR Code

Electrochemical Approach on the Corrosion During the Cavitation of Additive Manufactured Commercially Pure Titanium

적층가공 방식으로 제조된 CP-Ti의 캐비테이션 중 부식에 대한 전기화학적 접근

  • Kim, K.T. (The Corrosion Science Society of Korea) ;
  • Chang, H.Y. (The Corrosion Science Society of Korea) ;
  • Kim, Y.S. (The Corrosion Science Society of Korea)
  • Received : 2018.12.11
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

The effect of passive film on corrosion of metals and alloys in a static corrosive environment has been studied by many researchers and is well known, however few studies have been conducted on the electrochemical measurement of metals and alloys during cavitation corrosion conditions, and there are no test standards for electrochemical measurements 'During cavitation' conditions. This study used commercially additive manufactured(AM) pure titanium in tests of anodic polarization, corrosion potential measurements, AC impedance measurements, and repassivation. Tests were performed in 3.5% NaCl solution under three conditions, 'No cavitation', 'After cavitation', and 'During cavitation' condition. When cavitation corrosion occurred, the passive current density was greatly increased, the corrosion potential largely lowered, and the passive film revealed a small polarization resistance. The current fluctuation by the passivation and repassivation phenomena was measured first, and this behavior was repeatedly generated at a very high speed. The electrochemical corrosion mechanism that occurred during cavitation corrosion was based on result of the electrochemical properties 'No cavitation', 'After cavitation', and 'During cavitation' conditions.

Keywords

E1COB2_2018_v17n6_310_f0001.png 이미지

Fig. 1 Schematic diagram of the cavitation corrosion tester.

E1COB2_2018_v17n6_310_f0002.png 이미지

Fig. 2 Dimension of Test specimen; (a) Specimen and screw thread, (b) Overview.

E1COB2_2018_v17n6_310_f0003.png 이미지

Fig. 3 Effect of cavitation condition on anodic polarization behavior of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0004.png 이미지

Fig. 4 Effect of cavitation condition on passive current density of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0005.png 이미지

Fig. 5 Effect of cavitation condition on potential change by cavitation at each 30-minute intervals of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0006.png 이미지

Fig. 6 Effect of cavitation condition on potential change at continuously 2 hours cavitation of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0007.png 이미지

Fig. 7 Effect of cavitation condition on AC-impedance of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0008.png 이미지

Fig. 8 Effect of cavitation condition on the polarization resistance of passive film obtained from AC-impedance measurement of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0009.png 이미지

Fig. 9 Effect of cavitation condition on the repassivation behavior of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.

E1COB2_2018_v17n6_310_f0010.png 이미지

Fig. 10 Surface changes with cavitation corrosion time of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃; (a) 0min(x500), (b) 120min(x500), (c) 120min(x5000).

E1COB2_2018_v17n6_310_f0011.png 이미지

Fig. 11 New cavitation corrosion mechanism; (a) Increasing surface area after cavitation corrosion, (b) Formation of unstable passive film after cavitation corrosion, (c) Formation of unstable passive film and repeated destruction of passive film during cavitation corrosion.

Table 1 Manufacture condition of additive manufacturing specimen

E1COB2_2018_v17n6_310_t0001.png 이미지

Table 2 Chemical composition of CP-Ti (wt%)

E1COB2_2018_v17n6_310_t0002.png 이미지

References

  1. A. Thiruvengadam, J.Basic Eng., 85, 365 (1963). https://doi.org/10.1115/1.3656610
  2. M. S. Plesset, A. T. Ellis, ASME, 77, 1055 (1955).
  3. B. Vyas and C. M. Preece, Metall. Trans. A, 8, 915 (1977). https://doi.org/10.1007/BF02661573
  4. E. H. R. Wade and C. M. Preece, Metall. Trans. A, 9, 1299 (1978). https://doi.org/10.1007/BF02652254
  5. A. Karimi and J. L. Martin, Int. Metals Rev., 31, 1 (1986).
  6. C. Z. Wu, Y. J. Chen, and T. S. Shih, Mater. Charact., 48, 43 (2002). https://doi.org/10.1016/S1044-5803(02)00232-2
  7. I. Senocak and W. Shyy, J. Comput. Physics, 176, 363 (2002). https://doi.org/10.1006/jcph.2002.6992
  8. B. Stutz and J. L. Reboud., Phys. Fluids, 9, 3678 (1997). https://doi.org/10.1063/1.869505
  9. C. J. Heathcock, B. E. Protheroe, and A. Ball, Wear, 81, 311 (1982). https://doi.org/10.1016/0043-1648(82)90278-2
  10. R. H. Richman, A. S. Rao, and D. E. Hodgson, Wear, 157, 401 (1992). https://doi.org/10.1016/0043-1648(92)90076-K
  11. V. H. Marynin, Mater. Sci., 39, 447 (2003). https://doi.org/10.1023/B:MASC.0000010751.88570.c2
  12. A. Krella, Wear, 297, 992 (2013). https://doi.org/10.1016/j.wear.2012.11.049
  13. V. Belous, V. Vasyliev, A. Luchaninov, V. Marinin, E. Reshetnyak, V. Strel'nitskij, S. Goltvyanytsya, and V. Goltvyanytsya, Surf. Coat. Tech., 223, 68 (2013). https://doi.org/10.1016/j.surfcoat.2013.02.031
  14. S. Munsterer and K. Kohlhof, Surf. Coat. Tech., 74, 642 (1995).
  15. W. Tabakoff, Surf. Coat. Tech., 120, 542 (1999).
  16. A. Krella and A. Czyzniewski, Wear, 260, 1324 (2006). https://doi.org/10.1016/j.wear.2005.09.018
  17. A. Krella and A. Czyzniewski, Wear, 265, 963 (2008). https://doi.org/10.1016/j.wear.2008.02.004
  18. C. T. Kwoka, F. T. Chenga, and H. C. Manb, Surf. Coat. Tech., 107, 31 (1998). https://doi.org/10.1016/S0257-8972(98)00549-0
  19. Y. S. Tian, C. Z. Chen, S. T. Li, and Q. H. Huo, Appl. Surf. Sci., 242, 177 (2005). https://doi.org/10.1016/j.apsusc.2004.08.011
  20. ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM (2010).
  21. D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, Ultrasonics Sonochemistry, 29, 279 (2016). https://doi.org/10.1016/j.ultsonch.2015.09.018
  22. D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, Ultrasonics Sonochemistry, 29, 48 (2016). https://doi.org/10.1016/j.ultsonch.2015.08.018
  23. A. Neville, Wear, 250, 726 (2001). https://doi.org/10.1016/S0043-1648(01)00709-8
  24. R. M. Fernandez-Domene, Electrochim. Acta, 58, 264 (2011). https://doi.org/10.1016/j.electacta.2011.09.034
  25. S. J. Kim, Mater. Res. Bull., 58, 244 (2014). https://doi.org/10.1016/j.materresbull.2014.03.029
  26. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM (2015).
  27. Milan Brandt, Laser Additive Manufacturing, pp. 351 - 354, ELSEVIER, New york (2016).
  28. ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2010).
  29. K. T. Kim, J. H. Lee, and Y. S. Kim, Mater., 10, 713 (2017). https://doi.org/10.3390/ma10070713
  30. J. Z. Lu, H. Qi, K. Y. Luo, M. Luo, and X. N. Cheng, Corros. Sci., 80, 53, (2014). https://doi.org/10.1016/j.corsci.2013.11.003
  31. O. Takakuwa and H. Soyama, Adv. Chem. Eng. Sci., 5, 62, (2015). https://doi.org/10.4236/aces.2015.51007
  32. R. M. Fernandez-Domene, E. Blasco-Tamarit, D.M. Garcia-Garcia, and J. Garcia-Anton, Corros. Sci., 52, 3453 (2010). https://doi.org/10.1016/j.corsci.2010.06.018
  33. J. Ryl, K. Darowicki, and P. Slepski, Corros. Sci., 53, 1873 (2011). https://doi.org/10.1016/j.corsci.2011.02.004
  34. C. Lin, Q. Zhao, X. Zhao, and Y. Yang, Inter. J. Georesources and Environment, 4, 1 (2018).
  35. D. G. Li, Ultrasonics Sonochemistry, 27, 296 (2015). https://doi.org/10.1016/j.ultsonch.2015.05.018
  36. X. Yong, D. Li, and H. Shen, Mater. Chem. Phys., 139, 290 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.038

Cited by

  1. Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성 vol.19, pp.6, 2020, https://doi.org/10.14773/cst.2020.19.6.318