Fig. 1 Schematic diagram of the cavitation corrosion tester.
Fig. 2 Dimension of Test specimen; (a) Specimen and screw thread, (b) Overview.
Fig. 3 Effect of cavitation condition on anodic polarization behavior of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 4 Effect of cavitation condition on passive current density of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 5 Effect of cavitation condition on potential change by cavitation at each 30-minute intervals of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 6 Effect of cavitation condition on potential change at continuously 2 hours cavitation of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 7 Effect of cavitation condition on AC-impedance of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 8 Effect of cavitation condition on the polarization resistance of passive film obtained from AC-impedance measurement of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 9 Effect of cavitation condition on the repassivation behavior of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃.
Fig. 10 Surface changes with cavitation corrosion time of additive manufactured CP-Ti in deaerated 3.5% NaCl solution at 25℃; (a) 0min(x500), (b) 120min(x500), (c) 120min(x5000).
Fig. 11 New cavitation corrosion mechanism; (a) Increasing surface area after cavitation corrosion, (b) Formation of unstable passive film after cavitation corrosion, (c) Formation of unstable passive film and repeated destruction of passive film during cavitation corrosion.
Table 1 Manufacture condition of additive manufacturing specimen
Table 2 Chemical composition of CP-Ti (wt%)
References
- A. Thiruvengadam, J.Basic Eng., 85, 365 (1963). https://doi.org/10.1115/1.3656610
- M. S. Plesset, A. T. Ellis, ASME, 77, 1055 (1955).
- B. Vyas and C. M. Preece, Metall. Trans. A, 8, 915 (1977). https://doi.org/10.1007/BF02661573
- E. H. R. Wade and C. M. Preece, Metall. Trans. A, 9, 1299 (1978). https://doi.org/10.1007/BF02652254
- A. Karimi and J. L. Martin, Int. Metals Rev., 31, 1 (1986).
- C. Z. Wu, Y. J. Chen, and T. S. Shih, Mater. Charact., 48, 43 (2002). https://doi.org/10.1016/S1044-5803(02)00232-2
- I. Senocak and W. Shyy, J. Comput. Physics, 176, 363 (2002). https://doi.org/10.1006/jcph.2002.6992
- B. Stutz and J. L. Reboud., Phys. Fluids, 9, 3678 (1997). https://doi.org/10.1063/1.869505
- C. J. Heathcock, B. E. Protheroe, and A. Ball, Wear, 81, 311 (1982). https://doi.org/10.1016/0043-1648(82)90278-2
- R. H. Richman, A. S. Rao, and D. E. Hodgson, Wear, 157, 401 (1992). https://doi.org/10.1016/0043-1648(92)90076-K
- V. H. Marynin, Mater. Sci., 39, 447 (2003). https://doi.org/10.1023/B:MASC.0000010751.88570.c2
- A. Krella, Wear, 297, 992 (2013). https://doi.org/10.1016/j.wear.2012.11.049
- V. Belous, V. Vasyliev, A. Luchaninov, V. Marinin, E. Reshetnyak, V. Strel'nitskij, S. Goltvyanytsya, and V. Goltvyanytsya, Surf. Coat. Tech., 223, 68 (2013). https://doi.org/10.1016/j.surfcoat.2013.02.031
- S. Munsterer and K. Kohlhof, Surf. Coat. Tech., 74, 642 (1995).
- W. Tabakoff, Surf. Coat. Tech., 120, 542 (1999).
- A. Krella and A. Czyzniewski, Wear, 260, 1324 (2006). https://doi.org/10.1016/j.wear.2005.09.018
- A. Krella and A. Czyzniewski, Wear, 265, 963 (2008). https://doi.org/10.1016/j.wear.2008.02.004
- C. T. Kwoka, F. T. Chenga, and H. C. Manb, Surf. Coat. Tech., 107, 31 (1998). https://doi.org/10.1016/S0257-8972(98)00549-0
- Y. S. Tian, C. Z. Chen, S. T. Li, and Q. H. Huo, Appl. Surf. Sci., 242, 177 (2005). https://doi.org/10.1016/j.apsusc.2004.08.011
- ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM (2010).
- D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, Ultrasonics Sonochemistry, 29, 279 (2016). https://doi.org/10.1016/j.ultsonch.2015.09.018
- D. G. Li, J. D. Wang, D. R. Chen, and P. Liang, Ultrasonics Sonochemistry, 29, 48 (2016). https://doi.org/10.1016/j.ultsonch.2015.08.018
- A. Neville, Wear, 250, 726 (2001). https://doi.org/10.1016/S0043-1648(01)00709-8
- R. M. Fernandez-Domene, Electrochim. Acta, 58, 264 (2011). https://doi.org/10.1016/j.electacta.2011.09.034
- S. J. Kim, Mater. Res. Bull., 58, 244 (2014). https://doi.org/10.1016/j.materresbull.2014.03.029
- ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, ASTM (2015).
- Milan Brandt, Laser Additive Manufacturing, pp. 351 - 354, ELSEVIER, New york (2016).
- ASTM G32-10, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus (2010).
- K. T. Kim, J. H. Lee, and Y. S. Kim, Mater., 10, 713 (2017). https://doi.org/10.3390/ma10070713
- J. Z. Lu, H. Qi, K. Y. Luo, M. Luo, and X. N. Cheng, Corros. Sci., 80, 53, (2014). https://doi.org/10.1016/j.corsci.2013.11.003
- O. Takakuwa and H. Soyama, Adv. Chem. Eng. Sci., 5, 62, (2015). https://doi.org/10.4236/aces.2015.51007
- R. M. Fernandez-Domene, E. Blasco-Tamarit, D.M. Garcia-Garcia, and J. Garcia-Anton, Corros. Sci., 52, 3453 (2010). https://doi.org/10.1016/j.corsci.2010.06.018
- J. Ryl, K. Darowicki, and P. Slepski, Corros. Sci., 53, 1873 (2011). https://doi.org/10.1016/j.corsci.2011.02.004
- C. Lin, Q. Zhao, X. Zhao, and Y. Yang, Inter. J. Georesources and Environment, 4, 1 (2018).
- D. G. Li, Ultrasonics Sonochemistry, 27, 296 (2015). https://doi.org/10.1016/j.ultsonch.2015.05.018
- X. Yong, D. Li, and H. Shen, Mater. Chem. Phys., 139, 290 (2013). https://doi.org/10.1016/j.matchemphys.2013.01.038
Cited by
- Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성 vol.19, pp.6, 2020, https://doi.org/10.14773/cst.2020.19.6.318