참고문헌
- Ansari, R., Oskouie, M.F. and Gholami, R. (2016), "Size-dependent geometrically nonlinear free vibration analysis of fractional viscoelastic nanobeams based on the nonlocal elasticity theory", Phys. E: Lowdimens. Syst. Nanostruct., 75, 266-271.
- Arda, M. and Aydogdu, M. (2017), Longitudinal Vibration of CNTs Viscously Damped in Span.
- Barooti, M.M., Safarpour, H. and Ghadiri, M. (2017), "Critical speed and free vibration analysis of spinning 3D single-walled carbon nanotubes resting on elastic foundations", Eur. Phys. J. Plus, 132(1), 6.
- Chen, S.S. (2004), "Application of the differential transformation method to a non-linear conservative system", Appl. Math. Computat., 154(2), 431-441. https://doi.org/10.1016/S0096-3003(03)00723-9
- Duan, K., Li, Y., Li, L., Hu, Y. and Wang, X. (2018), "Diamond nanothread based resonators: ultrahigh sensitivity and low dissipation", Nanoscale, 10(17), 8058-8065.
- Ebrahimi, F. and Barati, M.R. (2016a), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 1-25.
- Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
- Ebrahimi, F. and Barati, M.R. (2016c), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910.
- Ebrahimi, F. and Barati, M.R. (2016d), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
- Ebrahimi, F. and Barati, M.R. (2016e), "Buckling analysis of piezoelectrically actuated smart nanoscale plates subjected to magnetic field", J. Intel. Mater. Syst. Struct., 1045389X16672569.
- Ebrahimi, F. and Barati, M.R. (2016f), "A nonlocal higher-order shear deformation beam theory for vibration analysis of size-dependent functionally graded nanobeams", Arab. J. Sci. Eng., 41(5), 1679-1690. https://doi.org/10.1007/s13369-015-1930-4
- Ebrahimi, F. and Barati, M.R. (2016g), "Vibration analysis of nonlocal beams made of functionally graded material in thermal environment", Eur. Phys. J. Plus, 131(8), 279. https://doi.org/10.1140/epjp/i2016-16279-y
- Ebrahimi, F. and Barati, M.R. (2016h), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
- Ebrahimi, F. and Barati, M.R. (2016i), "A unified formulation for dynamic analysis of nonlocal heterogeneous nanobeams in hygro-thermal environment", Appl. Phys. A, 122(9), 792. https://doi.org/10.1007/s00339-016-0322-2
- Ebrahimi, F. and Barati, M.R. (2016j), "A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures", Int. J. Eng. Sci., 107, 183-196. https://doi.org/10.1016/j.ijengsci.2016.08.001
- Ebrahimi, F. and Barati, M.R. (2017), "A third-order parabolic shear deformation beam theory for nonlocal vibration analysis of magneto-electro-elastic nanobeams embedded in two-parameter elastic foundation", Adv. Nano Res., Int. J., 5(4), 313-336. https://doi.org/10.21474/IJAR01/4719
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6(2), 93-112. https://doi.org/10.21474/IJAR01/7340
- Ebrahimi, F. and Dabbagh, A. (2016), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293.
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24(10), 820-829.
- Ebrahimi, F. and Habibi, S. (2017), "Low-velocity impact response of laminated FG-CNT reinforced composite plates in thermal environment", Adv. Nano Res., Int. J., 5(2), 69-97.
- Ebrahimi, F. and Haghi, P. (2018), "Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment", Adv. Nano Res., Int. J., 6(1), 21-37.
- Ebrahimi, F. and Hosseini, S.H.S. (2016a), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stress., 39(5), 606-625. https://doi.org/10.1080/01495739.2016.1160684
- Ebrahimi, F. and Hosseini, S.H.S. (2016b), "Double nanoplate-based NEMS under hydrostatic and electrostatic actuations", Eur. Phys. J. Plus, 131(5), 1-19. https://doi.org/10.1140/epjp/i2016-16001-3
- Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80.
- Ebrahimi, F. and Shaghaghi, G.R. (2015), "Vibration analysis of an initially pre-stressed rotating carbon nanotube employing differential transform method", Int. J. Adv. Des. Manuf. Technol., 8(4), 13-21.
- Ebrahimi, F. and Shaghaghi, G.R. (2016), "Thermal effects on nonlocal vibrational characteristics of nanobeams with non-ideal boundary conditions", Smart Struct. Syst., Int. J., 18(6), 1087-1109.
- Ebrahimi, F. and Shaghaghi, G.R. (2018), "Nonlinear vibration analysis of electro-hygro-thermally actuated embedded nanobeams with various boundary conditions", Microsyst. Technol., 24(12), 5037-5054.
- Ebrahimi, F., Shaghaghi, G.R. and Salari, E. (2014), "Vibration analysis of size-dependent nano beams basedon nonlocal timoshenko beam theory", J. Mech. Eng. Technol. (JMET), 6(2).
- Ebrahimi, F., Boreiry, M. and Shaghaghi, G. (2015), "Investigating the surface elasticity and tension effects on critical buckling behaviour of nanotubes based on differential transformation method", J. Mech. Eng. Technol. (JMET), 7(1).
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Ebrahimi, F., Shaghaghi, G.R. and Boreiry, M. (2016b), "A semi-analytical evaluation of surface and nonlocal effects on buckling and vibrational characteristics of nanotubes with various boundary conditions", Int. J. Struct. Stabil. Dyn., 16(6), 1550023.
- Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2016c), "In-plane thermal loading effects on vibrational characteristics of functionally graded nanobeams", Meccanica, 51(4), 951-977. https://doi.org/10.1007/s11012-015-0248-3
- Ebrahimi, F., Ehyaei, J. and Babaei, R. (2016d), "Thermal buckling of FGM nanoplates subjected to linear and nonlinear varying loads on Pasternak foundation", Adv. Mater. Res., Int. J., 5(4), 245-261.
- Ebrahimi, F., Babaei, R. and Shaghaghi, G.R. (2018), "Nonlocal buckling characteristics of heterogeneous plates subjected to various loadings", Adv. Aircr. Spacecr. Sci., 5(5), 515-531. https://doi.org/10.12989/aas.2018.5.5.515
- Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
- Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., Int. J., 5(2), 141-169.
- Elishakoff, I., Challamel, N., Soret, C., Bekel, Y. and Gomez, T. (2013), "Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects", Phil. Trans. R. Soc. A, 371(1993), 20120424. https://doi.org/10.1098/rsta.2012.0424
- Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Computat., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
- Fernandes, R., El-Borgi, S., Mousavi, S.M., Reddy, J.N. and Mechmoum, A. (2017), "Nonlinear size-dependent longitudinal vibration of carbon nanotubes embedded in an elastic medium", Physica E: Low-dimens. Syst. Nanostruct., 88, 18-25. https://doi.org/10.1016/j.physe.2016.11.007
- Ghadiri, M., Ebrahimi, F., Salari, E., Hosseini, S.A.H. and Shaghaghi, G.R. (2015), "Electro-thermo-mechanical vibration analysis of embedded single-walled boron nitride nanotubes based on nonlocal third-order beam theory", Int. J. Multiscale Computat. Eng., 13(5).
- Hassan, I.A.H. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127(1), 1-22. https://doi.org/10.1016/S0096-3003(00)00123-5
- Hwang, H.J., Jung, S.L., Cho, K.H., Kim, Y. and Jang, H. (2010), "Tribological performance of brake friction materials containing carbon nanotubes", Wear, 268(3-4), 519-525. https://doi.org/10.1016/j.wear.2009.09.003
- Ju, S.P. (2004), "Application of differential transformation to transient advective-dispersive transport equation", Appl. Math. Comput., 155(1), 25-38. https://doi.org/10.1016/S0096-3003(03)00755-0
- Karlicic, D., Kozic, P., Adhikari, S., Cajic, M., Murmu, T. and Lazarevic, M. (2015), "Nonlocal mass-nanosensor model based on the damped vibration of single-layer graphene sheet influenced by in-plane magnetic field", Int. J. Mech. Sci., 96, 132-142.
- Li, L. and Hu, Y. (2017), "Post-buckling analysis of functionally graded nanobeams incorporating nonlocal stress and microstructure-dependent strain gradient effects", Int. J. Mech. Sci., 120, 159-170. https://doi.org/10.1016/j.ijmecsci.2016.11.025
- Li, X.F., Tang, G.J., Shen, Z.B. and Lee, K.Y. (2015), "Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory", Ultrasonics, 55, 75-84. https://doi.org/10.1016/j.ultras.2014.08.002
- Marzbanrad, J., Ebrahimi-Nejad, S., Shaghaghi, G. and Boreiry, M. (2018b), "Nonlinear vibration analysis of piezoelectric functionally graded nanobeam exposed to combined hygro-magneto-electro-thermo-mechanical loading", Mater. Res. Express, 5(7), 075022. https://doi.org/10.1088/2053-1591/aad0ce
- Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139. https://doi.org/10.1088/0957-4484/11/3/301
- Mohammadimehr, M., Mohammadi-Dehabadi, A.A. and Maraghi, Z.K. (2017), "The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow", Phys. B: Condensed Matter, 510, 48-59.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Murmu, T. and Adhikari, S. (2013), "Nonlocal mass nanosensors based on vibrating monolayer graphene sheets", Sensors Actuators B: Chem., 188, 1319-1327.
- Pradhan, S.C. and Phadikar, J.K. (2011), "Nonlocal theory for buckling of nanoplates", Int. J. Struct. Stabil. Dyn., 11(3), 411-429. https://doi.org/10.1142/S021945541100418X
- Wang, Z.G. (2013), "Axial vibration analysis of stepped bar by differential transformation method", In: Applied Mechanics and Materials (Vol. 419, pp. 273-279), Trans Tech Publications.
- Wu, H.L., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections", Compos. Part B: Eng., 90, 86-96.
- Zhou, C.W., Sun, X.K., Laine, J.P., Ichchou, M.N., Zine, A., Hans, S. and Boutin, C. (2018), "Wave Propagation Feature in Two-Dimensional Periodic Beam Lattices with Local Resonance by Numerical Method and Analytical Homogenization Approach", Int. J. Appl. Mech., 1850042.
- Zhu, X. and Li, L. (2017), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145.