References
- Alizada, A.N., Sofiyev, A.H. and Kuruoglu, N. (2012), "Stress analysis of a substrate coated by nanomaterials with vacancies subjected to uniform extension load", Acta Mechanica, 223(7), 1371-1383. https://doi.org/10.1007/s00707-012-0649-5
- Ansari, R. and Norouzzadeh, A. (2016), "Nonlocal and surface effects on the buckling behavior of functionally graded nanoplates: An isogeometric analysis", Phys. E: Low-dimens. Syst. Nanostruct., 84, 84-97.
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Phys. E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Bafekrpour, E., Simon, G.P., Habsuda, J., Naebe, M., Yang, C. and Fox, B. (2012), "Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites", Mater. Sci. Eng.: A, 545, 123-131. https://doi.org/10.1016/j.msea.2012.02.097
- Carbonari, R.C., Silva, E.C. and Paulino, G.H. (2009), "Multi-actuated functionally graded piezoelectric micro-tools design: A multiphysics topology optimization approach", Int. J. Numer. Methods Eng., 77(3), 301-336. https://doi.org/10.1002/nme.2403
- Daneshmehr, A., Rajabpoor, A. and Hadi, A. (2015), "Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories", Int. J. Eng. Sci., 95, 23-35.
- Ebrahimi, F. and Barati, M.R. (2016), "Temperature distribution effects on buckling behavior of smart heterogeneous nanosize plates based on nonlocal four-variable refined plate theory", Int. J. Smart Nano Mater., 7(3), 119-143.
- Ebrahimi, F. and Rastgoo, A. (2008), "Free vibration analysis of smart annular FGM plates integrated with piezoelectric layers", Smart Mater. Struct., 17(1), 015044. https://doi.org/10.1088/0964-1726/17/1/015044
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), p.125007. https://doi.org/10.1088/0964-1726/24/12/125007
- Ebrahimi, F., Rastgoo, A. and Kargarnovin, M.H. (2008), "Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers", J. Mech. Sci. Technol., 22(6), 1058-1072. https://doi.org/10.1007/s12206-008-0303-2
- Ebrahimi, F., Naei, M.H. and Rastgoo, A. (2009), "Geometrically nonlinear vibration analysis of piezoelectrically actuated FGM plate with an initial large deformation", J. Mech. Sci. Technol., 23(8), 2107-2124. https://doi.org/10.1007/s12206-009-0358-8
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y
- Ebrahimi, F., Barati, M.R. and Haghi, P. (2017), "Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams", J. Thermal Stress., 40(5), 535-547. https://doi.org/10.1080/01495739.2016.1230483
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Computat., 218(14), 7406-7420.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), p. 56. https://doi.org/10.1038/354056a0
- Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Compos. Part B: Eng., 45(1), 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
- Lee, Z., Ophus, C., Fischer, L.M., Nelson-Fitzpatrick, N., Westra, K.L., Evoy, S., Radmilovic, V., Dahmen, U. and Mitlin, D. (2006), "Metallic NEMS components fabricated from nanocomposite Al-Mo films", Nanotechnology, 17(12), p. 3063. https://doi.org/10.1088/0957-4484/17/12/042
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Lun, F.Y., Zhang, P., Gao, F.B. and Jia, H.G. (2006), "Design and fabrication of micro-optomechanical vibration sensor", Microfabr. Technol., 120(1), 61-64.
- Lv, Z., Qiu, Z., Zhu, J., Zhu, B. and Yang, W. (2018), "Nonlinear free vibration analysis of defective FG nanobeams embedded in elastic medium", Compos. Struct..
- Mahmoudpour, E., Hosseini-Hashemi, S.H. and Faghidian, S.A. (2018), "Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model", Appl. Math. Model., 57, 302-315. https://doi.org/10.1016/j.apm.2018.01.021
- Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, January, pp. 539-544.
- Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of non-homogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., Int. J., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
- Tang, Y.G., Liu, Y. and Zhao, D. (2018), "Effects of neutral surface deviation on nonlinear resonance of embedded temperature-dependent functionally graded nanobeams", Compos. Struct., 184, 969-979.
- Thermophysical Properties Research Center (1967), Thermophysical properties of high temperature solid materials; Volume 1, Elements.-Pt. 1. Ed. Yeram Sarkis Touloukian, Macmillan.
- Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242. https://doi.org/10.1016/j.physleta.2006.10.093
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded poly-SiGe layers for MEMS applications", In: Materials Science Forum, Volume 492, pp. 255-260. Trans Tech Publications.
- Zhang, D.G. (2013), "Nonlinear bending analysis of FGM beams based on physical neutral surface and high order shear deformation theory", Compos. Struct., 100, 121-126. https://doi.org/10.1016/j.compstruct.2012.12.024
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), p. 205430.
Cited by
- Frequency and thermal buckling information of laminated composite doubly curved open nanoshell vol.10, pp.1, 2018, https://doi.org/10.12989/anr.2021.10.1.001
- Computer simulation for stability performance of sandwich annular system via adaptive tuned deep learning neural network optimization vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.083
- Computer modeling for frequency performance of viscoelastic magneto-electro-elastic annular micro/nanosystem via adaptive tuned deep learning neural network optimization vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.203