DOI QR코드

DOI QR Code

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet (Institute of Science, Trakya University) ;
  • Aydogdu, Metin (Department of Mechanical Engineering, Trakya University)
  • 투고 : 2018.05.24
  • 심사 : 2018.10.12
  • 발행 : 2018.12.25

초록

The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

키워드

참고문헌

  1. Adhikari, S., Murmu, T. and McCarthy, M.A. (2014), "Frequency domain analysis of nonlocal rods embedded in an elastic medium", Physica E: Low-dimens. Syst. Nanostruct., 59, 33-40. https://doi.org/10.1016/j.physe.2013.11.001
  2. Ansari, R. and Hemmatnezhad, M. (2011), "Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach", Math. Comput. Model., 53(5-6), 927-938. https://doi.org/10.1016/j.mcm.2010.10.029
  3. Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E: Low-dimens. Syst. Nanostruct., 41(5), 861-864. https://doi.org/10.1016/j.physe.2009.01.007
  4. Aydogdu, M. (2014), "Longitudinal wave propagation in multiwalled carbon nanotubes", Compos. Struct., 107, 578-584.
  5. Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., Int. J., 4(4), 265-279.
  6. Aydogdu, M. and Elishakoff, I. (2014), "On the vibration of nanorods restrained by a linear spring in-span", Mech. Res. Commun., 57, 90-96. https://doi.org/10.1016/j.mechrescom.2014.03.003
  7. Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., Int. J., 55(2), 281-298.
  8. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37. https://doi.org/10.12989/anr.2015.3.1.029
  9. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg A.O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  10. Cigeroglu, E. and Samandari, H. (2012), "Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions", Physica E: Low-dimens. Syst. Nanostruct., 46, 160-173.
  11. Cigeroglu, E. and Samandari, H. (2014), "Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method", Physica E: Low-dimens. Syst. Nano Struct., 64, 95-105. https://doi.org/10.1016/j.physe.2014.07.010
  12. Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004
  13. Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80.
  14. Eringen, A.C. (1976), Nonlocal polar field models, Academic Press, New York, NY, USA.
  15. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803
  16. Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  17. Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
  18. Fernandes, R., El-Borgi., S., Mousavi, S.M., Reddy, J.N. and Mechmoum, A. (2017), "Nonlinear sizedependent longitudinal vibration of carbon nanotubes embedded in an elastic medium", Phys. E: Low dimens. Syst. Nanostruct., 88(5), 18-25. https://doi.org/10.1016/j.physe.2016.11.007
  19. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756. https://doi.org/10.1016/j.jsv.2006.02.024
  20. Ghayesh, M.H. (2014), "Nonlinear size dependent behavior of single-walled carbon nanotubes", Appl. Phys. A, 117(3), 1393-1399. https://doi.org/10.1007/s00339-014-8561-6
  21. Ghayesh, M.H. and Farokhi, H. (2015a), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004
  22. Ghayesh, M.H. andd Farokhi, H. (2015b), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004
  23. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
  24. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013b), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B, 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021
  25. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155.
  26. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013d), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60.
  27. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B, 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074
  28. Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003
  29. Ghayesh, M.H. (2018a), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037
  30. Ghayesh, M.H. (2018b), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017
  31. Ghayesh, M.H. (2018c), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124,115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004
  32. Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlin. Dyn., 79, 1771-1785. https://doi.org/10.1007/s11071-014-1773-7
  33. Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double-walled carbon nanotube", Struct. Eng. Mech., Int. J., 54(5), 987-998.
  34. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
  35. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computat. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002
  36. Lai, W.M., Rubin, D. and Krempl, E. (2010), Introduction to Continuum Mechanics, Butterworth Heinemann.
  37. Mousavi, S.M. and Fariborz, S.J. (2012), "Free vibration of a rod undergoing finite strain", J. Phys.: Conference Series, 382(1), 012011. https://doi.org/10.1088/1742-6596/382/1/012011
  38. Murmu, T., Adhikari, S. and McCarthy, M.A. (2014), "Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci., 11, 1-7.
  39. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to Nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  40. Pour, H.R., Vossough, H., Beygipoor, M.M.H.G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073. https://doi.org/10.12989/sem.2015.54.6.1061
  41. Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350. https://doi.org/10.12989/scs.2017.23.3.339
  42. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum Mechanics", J. Appl. Phys., 94, 7281-7287. https://doi.org/10.1063/1.1625437
  43. Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71, 195412. https://doi.org/10.1103/PhysRevB.71.195412
  44. Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18(7), 075702. https://doi.org/10.1088/0957-4484/18/7/075702
  45. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Phys. E: Low-dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035