DOI QR코드

DOI QR Code

A layerwise theory for buckling analysis of truncated conical shells reinforced by CNTs and carbon fibers integrated with piezoelectric layers in hygrothermal environment

  • Received : 2018.07.16
  • Accepted : 2018.10.08
  • Published : 2018.12.25

Abstract

A layerwise shear deformation theory is applied in this paper for buckling analysis of piezoelectric truncated conical shell. The core is a multiphase nanocomposite reinforced by carbon nanotubes (CNTs) and carbon fibers. The top and bottom face sheets are piezoelectric subjected to 3D electric field and external voltage. The Halpin-Tsai model is used for obtaining the effective moisture and temperature dependent material properties of the core. The proposed layerwise theory is based on Mindlin's first-order shear deformation theory in each layer and results for a laminated truncated conical shell with three layers considering the continuity boundary condition. Applying energy method, the coupled motion equations are derived and analyzed using differential quadrature method (DQM) for different boundary conditions. The influences of some parameters such as boundary conditions, CNTs weight percent, cone semi vertex angle, geometrical parameters, moisture and temperature changes and external voltage are investigated on the buckling load of the smart structure. The results show that enhancing the CNTs weight percent, the buckling load increases. Furthermore, increasing the moisture and temperature changes decreases the buckling load.

Keywords

References

  1. Abediokhchi, J., Kouchakzadeh, M.A. and Shakouri, M. (2013), "Buckling analysis of cross-ply laminated conical panels using GDQ method", Compos. Part B: Eng., 55, 440-446. https://doi.org/10.1016/j.compositesb.2013.07.003
  2. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Araujo, A.L, Carvalho, V.S., MotaSoares, C.M., Belinha, J. and Ferreira, A.J.M. (2016), "Vibration analysis of laminated soft core sandwich iplates with piezoelectric sensors and actuators", Compos. Struct., 151, 91-98. https://doi.org/10.1016/j.compstruct.2016.03.013
  4. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  5. Aylikci, F., Akbarov, S.D. and Yahnioglu, N. (2017), "Buckling delamination of a PZT/Metal/PZT sandwich rectangular thick plate containing interface inner band cracks", Compos. Struct., 202, 9-16.
  6. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., Int. J., 19(3), 289-297.
  7. Demir, C., Mercan, K. and Civalek, O. (2016), "Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel", Compos. Part B: Eng., 94, 1-10. https://doi.org/10.1016/j.compositesb.2016.03.031
  8. Duc, N.D., Hadavinia, H., Van Thu, P. and Quan, T.Q. (2015), "Vibration and nonlinear dynamic response of imperfect three-phase polymer nanocomposite panel resting on elastic foundations under hydrodynamic loads", Compos. Struct., 131, 229-237. https://doi.org/10.1016/j.compstruct.2015.05.009
  9. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017a), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundation", Thin-Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016
  10. Duc, N.D., Lee, J., Nguyen-Thoi, T. and Thang, P.T. (2017b), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032
  11. Duc, N.D., Tran, Q.Q. and Nguyen, D.K. (2017c), "New approach to investigate nonlinear dynamic response and vibration of imperfect functionally graded carbon nanotube reinforced composite double curved shallow shells subjected to blast load and temperature", Aerosp. Sci. Technol., 71, 360-372. https://doi.org/10.1016/j.ast.2017.09.031
  12. Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D. and Anh, V.M. (2018), "Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell", Compos. Struct., 184, 1137-1144. https://doi.org/10.1016/j.compstruct.2017.10.064
  13. Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory", Adv. Nano Res., Int. J., 6, 93-112. https://doi.org/10.21474/IJAR01/7340
  14. Ebrahimi, F. and Jafari, A. (2017), "Investigating vibration behavior of smart imperfect functionally graded beam subjected to magnetic-electric fields based on refined shear deformation theory", Adv. Nano Res., Int. J., 5(4), 281-301. https://doi.org/10.21474/IJAR01/4108
  15. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., Int. J., 63(5), 585-595.
  16. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017a), "Dynamic buckling of sensor/functionally graded-carbon nanotubes reinforced laminated plates/actuator based on sinusoidalviscopiezoelasticity theories", J. Sandw. Struct. Mater., 1099636217720373.
  17. Hajmohammad, M.H., Azizkhani, M.B. and Kolahchi, R. (2017b), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", Int. J. Mech. Sci., 137, 205-213.
  18. Hull, D. and Clyne, T. (2001), An Introduction to Composite Materials, Cambridge University Press.
  19. Kapuria, S., Dumir, P.C. and Ahmed, A. (2003), "An efficient coupled layerwise theory for static analysis of piezoelectric sandwich beams", Arch. Appl. Mech., 73, 147-159. https://doi.org/10.1007/s00419-003-0277-6
  20. Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2018), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory" Proceed. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 0954406218756451.
  21. Khan, A.H. and Patel, B.P. (2015), "On the nonlinear dynamics of bimodular laminated composite conical panels", Nonlinear Dyn., 79, 1495-1509.
  22. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., Int. J., 64(4), 391-402.
  23. Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theoriesusing DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  24. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based onvisco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186.
  25. Kolahchi, R., Zarei, M.S. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperaturedependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265.
  26. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017a), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined Zigzag theory", Int. J. Mech. Sci., 130, 534-545.
  27. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 1099636217731071.
  28. Larbi Chaht, F., Kaci, A., Houari, M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  29. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508.
  30. Malekzade Fard, K. and Livani, M. (2014), "The buckling of truncated conical sandwich panels under axial compression and external pressur", Proceed. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 229, 1965-1978.
  31. Mehri, M., Asadi, H. and Wang, Q. (2016), "Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method", Comput. Meth. Appl. Mech. Eng., 303, 75-100. https://doi.org/10.1016/j.cma.2016.01.017
  32. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  33. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  34. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383.
  35. Nasihatgozar, M. and Khalili, S.M.R. (2017), "Vibration and buckling analysis of laminated sandwich conical shells using higher order shear deformation theory and differential quadrature method", J. Sandw. Struct. Mater., 1099636217715806.
  36. Tong, L. (1994), "Free vibration of laminated conical shells including transverse shear deformation", Int. J. Solid Struct., 31, 443-456. https://doi.org/10.1016/0020-7683(94)90085-X
  37. Plagianakos, Th.S. and Papadopoulos, E.G. (2015), "Coupled higher-order layerwise mechanics and finite element for cylindrical composite and sandwich shells with piezoelectric transducers", Eur. J. Mech. - A/Solids, 54, 11-23. https://doi.org/10.1016/j.euromechsol.2015.06.003
  38. Reddy, J. (2003), Mechanics of Laminated Composite Plates and Shells, Theory and Application, CRC Press, Boca Raton, FL, USA.
  39. Sharnappa, S., Ganesan, N. and Sethuraman, R. (2007), "Free Vibration Analysis Of Truncated Sandwich Conical Shells With Constrained Electro-Rheological Fluid Damping", Vibration Problems ICOVP, 1, 357-364.
  40. Shekari, A., Ashenai Ghasemi, F. and Malekzadehfard, K. (2017), "Free Damped Vibration of Rotating Truncated Conical Sandwich Shells Using an Improved High-Order Theory", Lat. Am. J. Solids Struct., 14(12), 2291-2323. https://doi.org/10.1590/1679-78253977
  41. Sofiyev, A.H., Osmancelebioglu, E. and Osmancelebioglu, A. (2017), "The free vibration of sandwich truncated conical shells containing functionally graded layers within the shear deformation theory", Compos. Part B: Eng., 120, 197-211. https://doi.org/10.1016/j.compositesb.2017.03.054
  42. Thanh, N.V., Khoa, N.D., Tuan, N.D., Tran, P. and Duc, N.D. (2017), "Nonlinear dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shear deformable plates with temperature-dependent material properties", J. Therm. Stres., 40, 1254-1274.
  43. Viswanathan, K.K., Lee, J.H., Aziz, Z.A., Hossain, I., Rongqiao, H.W. and Abdullah, H.Y. (2012), "Vibration analysis of cross-ply laminated truncated conical shells using a spline method", J. Eng. Math., 76, 139-156. https://doi.org/10.1007/s10665-011-9525-x
  44. Viswanathan, K.K., Saira, J., Kandasamy, P., Aziz, Z.A. and Abu Bakar, I. (2015), "Free vibration of antisymmetric angle-ply laminated conical shells", Compos. Struct., 122, 488-495. https://doi.org/10.1016/j.compstruct.2014.11.075
  45. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of under water fluid-conveying concrete pipes reinforced with $SiO_2$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earth. Eng., 103, 76-85.
  46. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  47. Zidi, M., Tounsi, A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  48. Zhong, C. and Reimerdes, H.G. (2007), "Stability behavior of cylindrical and conical sandwich shells with flexible core", J. Sandw. Struct. Mater., 9(2), 143-166. https://doi.org/10.1177/1099636207068687

Cited by

  1. A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation vol.31, pp.5, 2018, https://doi.org/10.12989/scs.2019.31.5.503
  2. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
  3. Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite vol.73, pp.6, 2018, https://doi.org/10.12989/sem.2020.73.6.715
  4. Vibration characteristics of microplates with GNPs-reinforced epoxy core bonded to piezoelectric-reinforced CNTs patches vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.115