References
- Alonso, L., Barbaran, J., Chen, J., Diaz, M., Llopis, L. and Rubio, B. (2018), "Middleware and communication technologies for structural health monitoring of critical infrastructures: A survey", Comput. Stand. Interf., 56(Supplement C), 83-100. https://doi.org/10.1016/j.csi.2017.09.007
- An, D., Kim, N.H. and Choi, J. (2015), "Practical options for selecting data-driven or physics-based prognostics algorithms with reviews", Reliab. Eng. Syst. Saf., 133, 223-236. https://doi.org/10.1016/j.ress.2014.09.014
- Aronszajn, N. (1950), "Theory of reproducing kernels", Trans. Am. Math. Soc., 68(3), 337-404. https://doi.org/10.1090/S0002-9947-1950-0051437-7
- Berlinet, A. and Thomas-Agnan, C. (2011), Reproducing kernel Hilbert spaces in probability and statistics, Springer Science & Business Media.
- Boller, C., Chang, F.-K. and Fujino, Y. (2009), Encyclopedia of structural health monitoring, John Wiley & Sons.
- Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P. and Gu, Q.M. (2003), "A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine", Neurocomputing, 55, 321-336. https://doi.org/10.1016/S0925-2312(03)00433-8
- Cha, Y.-J. and Wang, Z. (2017), "Unsupervised novelty detectionbased structural damage localization using a density peaksbased fast clustering algorithm", Struct. Heal. Monit., 17(2), 313-324. https://doi.org/10.1177/1475921717691260
- Cha, Y., Choi, W. and Buyukozturk, O. (2017), "Deep learning‐based crack damage detection using convolutional neural networks", Comput. Civ. Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chandorkar, M., Mall, R., Lauwers, O., Suykens, J.A.K. and De Moor, B. (2015), "Fixed-size least squares support vector machines: Scala implementation for large scale classification", 2015 IEEE Symposium Series on Computational Intelligence, pp. 522-528.
- De Boe, P. (2003), "Les elements piezo-lamines appliques a la dynamique des structures", Ph.D. Dissertation.
- De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., … Suykens, J.A.K. (2010), LSSVMlab Toolbox User's Guide: version 1.7. Katholieke Universiteit Leuven.
- Deraemaeker, A. and Worden, K. (2012), New trends in vibration based structural health monitoring (Vol. 520), Springer Science & Business Media.
- Farrar, C.R. and Worden, K. (2012), Structural health monitoring: a machine learning perspective, John Wiley & Sons.
- Farrar, C.R., Worden, K., Todd, M.D., Park, G., Nichols, J., Adams, D.E., Bement, M.T. and Farinholt, K. (2007), Nonlinear system identification for damage detection, Los Alamos National Laboratory (LANL), Los Alamos, NM, USA.
- Feeny, B.F. and Kappagantu, R. (1998), "On the physical interpretation of proper orthogonal modes in vibrations", J. Sound Vib., 211(4), 607-616. https://doi.org/10.1006/jsvi.1997.1386
- Figueiredo, E. and Flynn, E. (2009), "Three-story building structure to detect nonlinear effects", Rep. SHMTools Data Descr.
- Figueiredo, E., Park, G., Figueiras, J., Farrar, C. and Worden, K. (2009), Structural health monitoring algorithm comparisons using standard data sets, Los Alamos National Laboratory (LANL), Los Alamos, NM, USA.
- Figueiredo, E., Park, G., Farrar, C.R., Worden, K. and Figueiras, J. (2011), "Machine learning algorithms for damage detection under operational and environmental variability", Struct. Heal. Monit., 10(6), 559-572. https://doi.org/10.1177/1475921710388971
- Ghiasi, R., Torkzadeh, P. and Noori, M. (2016), "A machinelearning approach for structural damage detection using least square support vector machine based on a new combinational kernel function", Struct. Heal. Monit., 15(3), 302-316. https://doi.org/10.1177/1475921716639587
- Ghiasi, R., Ghasemi, M.R. and Sohrabi, M.R. (2017), "Structural Damage Detection using Frequency Response Function Index and Surrogate Model Based on Optimized Extreme Learning Machine Algorithm", J. Comput. Methods Eng., 36(1), 1-17. https://doi.org/10.18869/acadpub.jcme.36.1.1
- Golub, G.H. and Van Loan, C.F. (1996), Matrix computations. 1996, Johns Hopkins University Press, Balt, MD, USA, pp. 374-426.
- Gui, G., Pan, H., Lin, Z., Li, Y. and Yuan, Z. (2017), "Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection", KSCE J. Civ. Eng., 21(2), 523-534. https://doi.org/10.1007/s12205-017-1518-5
- He, Q., Kong, F. and Yan, R. (2007), "Subspace-based gearbox condition monitoring by kernel principal component analysis", Mech. Syst. Signal Process., 21(4), 1755-1772. https://doi.org/10.1016/j.ymssp.2006.07.014
- Jia, F., Lei, Y., Lin, J., Zhou, X. and Lu, N. (2016), "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data", Mech. Syst. Signal Process., 72, 303-315.
- Krishnan, M., Bhowmik, B., Hazra, B. and Pakrashi, V. (2018), "Real time damage detection using recursive principal components and time varying auto-regressive modeling", Mech. Syst. Signal Process., 101, 549-574. https://doi.org/10.1016/j.ymssp.2017.08.037
- Krzanowski, W. (2000), Principles of multivariate analysis- a user's perspective, Oxford University Press.
- Langone, R., Reynders, E., Mehrkanoon, S. and Suykens, J.A.K. (2017), "Automated structural health monitoring based on adaptive kernel spectral clustering", Mech. Syst. Signal Process., 90, 64-78. https://doi.org/10.1016/j.ymssp.2016.12.002
- Lei, Y., Jia, F., Lin, J., Xing, S. and Ding, S.X. (2016), "An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data", IEEE Trans. Ind. Electron., 63(5), 3137-3147. https://doi.org/10.1109/TIE.2016.2519325
- Malekzadeh, M. and Catbas, F.N. (2016), "A Machine Learning Framework for Automated Functionality Monitoring of Movable Bridges", In: Dynamics of Civil Structures, 2, 57-63.
- Malekzadeh, M., Atia, G. and Catbas, F.N. (2015), "Performancebased structural health monitoring through an innovative hybrid data interpretation framework", J. Civ. Struct. Heal. Monit., 5(3), 287-305. https://doi.org/10.1007/s13349-015-0118-7
- Mercer, J. (1909), "Functions of positive and negative type, and their connection with the theory of integral equations", Philos. Trans. R. Soc. London. Ser. A, Contain. Pap. a Math. or Phys. Character, 209, 415-446. https://doi.org/10.1098/rsta.1909.0016
- Nguyen, V.H. and Golinval, J. (2010), "Fault detection based on Kernel Principal Component Analysis", Eng. Struct., 32(11), 3683-3691. https://doi.org/10.1016/j.engstruct.2010.08.012
- Nguyen, T., Chan, T.H.T. and Thambiratnam, D.P. (2014), "Controlled Monte Carlo data generation for statistical damage identification employing Mahalanobis squared distance", Struct. Heal. Monit., 13(4), 461-472. https://doi.org/10.1177/1475921714521270
- Nobahari, M., Ghasemi, M.R. and Shabakhty, N. (2017), "Truss structure damage identification using residual force vector and genetic algorithm", Steel Compos. Struct., Int. J., 25(4), 485-496.
- Nystrom, E.J. (1930), "Uber die praktische Auflosung von Integralgleichungen mit Anwendungen auf Randwertaufgaben", Acta Math., 54(1), 185-204. https://doi.org/10.1007/BF02547521
- Peeters, B. and De Roeck, G. (2001), "One-year monitoring of the Z 24-Bridge: environmental effects versus damage events", Earthq. Eng. Struct. Dyn., 30(2), 149-171. https://doi.org/10.1002/1096-9845(200102)30:2<149::AID-EQE1>3.0.CO;2-Z
- Perez-Rendon, A.F. and Robles, R. (2004), "The convolution theorem for the continuous wavelet tranform", Signal Processing, 84(1), 55-67. https://doi.org/10.1016/j.sigpro.2003.07.014
- Rosipal, R. and Trejo, L.J. (2001), "Kernel partial least squares regression in reproducing kernel hilbert space", J. Mach. Learn. Res., 2(Dec), 97-123.
- Santos, A., Figueiredo, E., Silva, M.F.M., Sales, C.S. and Costa, J.C.W.A.C.W.A. (2016), "Machine learning algorithms for damage detection: Kernel-based approaches", J. Sound Vib., 363, 584-599. https://doi.org/10.1016/j.jsv.2015.11.008
- Scholkopf, B., Smola, A. and Muller, K.-R. (1998), "Nonlinear component analysis as a kernel eigenvalue problem", Neural Comput., 10(5), 1299-1319. https://doi.org/10.1162/089976698300017467
- Scholkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Muller, K.-R., Ratsch, G. and Smola, A.J. (1999), "Input space versus feature space in kernel-based methods", IEEE Trans. Neural Networks, 10(5), 1000-1017. https://doi.org/10.1109/72.788641
- Sokolova, M., Japkowicz, N. and Szpakowicz, S. (2006), "Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation", In: Australian Conference on Artificial Intelligence, pp. 1015-1021.
- Van Overschee, P. and De Moor, B.L. (2012), Subspace identification for linear systems: Theory-Implementation-Applications, Springer Science & Business Media.
- Wang, Z. and Cha, Y.-J. (2017), "Unsupervised Novelty Detection Techniques for Structural Damage Localization: A Comparative Study", In: Model Validation and Uncertainty Quantification, 3, 125-132.
- Wang, Z. and Cha, Y. (2018), "Automated damage-sensitive feature extraction using unsupervised convolutional neural networks", In: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018, 10598, 105981J.
- Williams, C.K.I. and Seeger, M. (2001), "Using the Nystrom method to speed up kernel machines", In: Advances in Neural Information Processing Systems, pp. 682-688.
- Worden, K., Farrar, C.R., Manson, G. and Park, G. (2007), "The fundamental axioms of structural health monitoring", Proc. R. Soc. London A Math. Phys. Eng. Sci., 463(2082), 1639-1664. https://doi.org/10.1098/rspa.2007.1834
- Yan, A.-M., Kerschen, G., De Boe, P. and Golinval, J.-C. (2005), "Structural damage diagnosis under varying environmental conditions-part I: a linear analysis", Mech. Syst. Signal Process., 19(4), 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
- Yang, T., Li, Y.-F., Mahdavi, M., Jin, R. and Zhou, Z.-H. (2012), "Nystrom method vs random fourier features: A theoretical and empirical comparison", In: Advances in Neural Information Processing Systems, pp. 476-484.
Cited by
- Prediction of the Bending Strength of Boltless Steel Connections in Storage Pallet Racks: An Integrated Experimental-FEM-SVM Methodology vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/5109204
- Field-testing and numerical simulation of vantage steel bridge vol.10, pp.3, 2018, https://doi.org/10.1007/s13349-020-00396-2