DOI QR코드

DOI QR Code

Foliar Application of the Fungicide Pyraclostrobin Reduced Bacterial Spot Disease of Pepper

Fungicide pyraclostrobin의 고추 세균점무늬병 예방효과

  • Received : 2018.02.09
  • Accepted : 2018.02.15
  • Published : 2018.03.31

Abstract

Pyraclostrobin is a broad-spectrum fungicide that inhibits mitochondrial respiration. However, it may also induce systemic resistance effective against bacterial and viral diseases. In this study, we evaluated whether pyraclostrobin enhanced resistance against the bacterial spot pathogen, Xanthomonas euvesicatora on pepper (Capsicum annuum). Although pyraclostrobin alone did not suppressed the in vitro growth of X. euvesicatoria, disease severity in pepper was significantly lower by 69% after treatments with pyraclostrobin alone. A combination of pyraclostrobin with streptomycin reduced disease by over 90% that of the control plants. The preventive control of the pyraclostrobin against bacterial spot was required application 1-3 days before pathogen inoculation. Our findings suggest that the fungicide pyraclostrobin can be used with a chemical pesticide to control bacterial leaf spot diseases in pepper.

Pyraclostrobin은 광범위한 스펙트럼의 항진균 활성이 있는 퀴논외부저해제(Quinone outside inhibitor, QoI)로 작용하는 살균제이다. 기존 보고에 의하면 pyraclostrobin이 일부 세균병과 바이러스병에 대해 병 저항성을 유도한다고 알려져 있다. 본 연구는 pyraclostrobin 항진균제를 활용하여 고추 세균점무늬병(Xanthomonas euvesicatoria)의 예방 가능성을 검토하였다. Pyraclostrobin은 in vitro 상에서 X. euvesicatoria에 대해 항균활성이 없었지만, 고추에 pyraclostrobin 단독(방제가 69%) 또는 streptomycin과 혼합 살포(방제가 90%) 하였을 때, 고추 세균점무늬병 예방 효과를 나타냈다. Pyraclostrobin의 고추 세균점무늬병 예방 효과는 병원균 접종 1-3일전이 효과적이었다. 이상의 결과로 pyraclostrobin 살진균제를 활용하여 고추 세균점무늬병을 효과적으로 예방할 수 있을 것을 사료된다.

Keywords

References

  1. Anfoka, G. H. 2000. Benzo-(1, 2, 3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. Crop Prot. 19: 401-405. https://doi.org/10.1016/S0261-2194(00)00031-4
  2. Avenot, H., Morgan, D. and Michailides, T. 2008. Resistance to pyraclostrobin, boscalid and multiple resistance to Pristine$^{(R)}$ (pyraclostrobin + boscalid) fungicide in Alternaria alternata causing alternaria late blight of pistachios in California. Plant Pathol. 57: 135-140. https://doi.org/10.1111/j.1365-3059.2007.01701.x
  3. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M. and Parr-Dobrzanski, B. 2002. The strobilurin fungicides. Pest Manage. Sci. 58: 649-662. https://doi.org/10.1002/ps.520
  4. Bouzar, H., Jones, J., Minsavage, G., Stall, R. and Scott, J. 1994. Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatoria revealed by silver staining. Phytopathology 84: 39-43. https://doi.org/10.1094/Phyto-84-39
  5. Cooksey, D. A. 1990. Genetics of bactericide resistance in plant pathogenic bacteria. Annu. Rev. Phytopathol. 28: 201-219. https://doi.org/10.1146/annurev.py.28.090190.001221
  6. Dietrich, R., Ploss, K. and Heil, M. 2005. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Environ. 28: 211-222. https://doi.org/10.1111/j.1365-3040.2004.01265.x
  7. Doidge, E. M. 1921. A tomato canker. Ann. Appl. Biol. 7: 407-430.
  8. Gardner, M. W. and Kendrick, J. 1921. Bacterial spot of tomato. J. Agric. Res. 21: 123-156.
  9. Harborne, J. B. 1999. The comparative biochemistry of phytoalexin induction in plants. Biochem. Syst. Ecol. 27: 335-367.
  10. Herms, S., Seehaus, K., Koehle, H. and Conrath, U. 2002. A strobilurin fungicide enhances the resistance of tobacco against tobacco mosaic virus and Pseudomonas syringae pv tabaci. Plant Physiol. 130: 120-127. https://doi.org/10.1104/pp.004432
  11. Itako, A. T., Tolentino Junior, J. B., Demant, L. A. R. and Maringoni, A. C. 2014. Control of bacterial spot of tomato and activation of enzymes related to resistance by chemicals under field conditions. J. Agric. Sci. 6: 100-109.
  12. Itako, A. T., Tolentino Junior, J. B., Silva Junior, T. A., Soman, J. M. and Maringoni, A. C. 2015. Chemical products induce resistance to Xanthomonas perforans in tomato. Braz. J. Microbiol. 46: 701-706. https://doi.org/10.1590/S1517-838246320140177
  13. Jones, J., Bouzar, H., Stall, R., Almira, E., Roberts, P., Bowen, B. W. et al. 2000. Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. Int. J. Syst. Evol. Microbiol. 50: 1211-1219. https://doi.org/10.1099/00207713-50-3-1211
  14. Jones, J., Stall, R. and Bouzar, H. 1998. Diversity among xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36: 41-58. https://doi.org/10.1146/annurev.phyto.36.1.41
  15. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E. and Schaad, N. W. 2004. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 27: 755-762. https://doi.org/10.1078/0723202042369884
  16. Karadimos, D., Karaoglanidis, G. and Tzavella-Klonari, K. 2005. Biological activity and physical modes of action of the Qo inhibitor fungicides trifloxystrobin and pyraclostrobin against Cercospora beticola. Crop Prot. 24: 23-29. https://doi.org/10.1016/j.cropro.2004.06.004
  17. Kim, J.-B. 2005. Pathogen, insect and weed control effects of secondary metabolites from plants. J. Korean Soc. Appl. Biol. Chem. 48: 1-15.
  18. Kim, J. H., Cheong, S. S., Lee, K. K., Yim, J. R. and Lee, W. H. 2015. Determination of economic control thresholds for bacterial spot on red pepper caused by Xanthomonas campestris pv. vesicatoria. Res. Plant Dis. 21: 89-93. https://doi.org/10.5423/RPD.2015.21.2.089
  19. Koga, J., Ogawa, N., Yamauchi, T., Kikuchi, M., Ogasawara, N. and Shimura, M. 1997. Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 44: 249-253. https://doi.org/10.1016/S0031-9422(96)00534-1
  20. Korea Crop Protection Association. 2017. Agrochemicals Use Guide Book. Korea Crop protection Association. URL http://www.koreacpa.org/
  21. Kyeon, M. S., Son, S. H., Noh, Y. H., Kim, Y. E., Lee, H. I. and Cha, J. S. 2016. Xanthomonas euvesicatoria causes bacterial spot disease on pepper plant in Korea. Plant Pathol. J. 32: 431-440. https://doi.org/10.5423/PPJ.OA.01.2016.0016
  22. Lee, S. D. and Cho, Y. S. 1996. Copper resistance and race distribution of Xanthomonas campestris pv. vesicatoria on pepper in Korea. Plant Pathol. J. 12: 150-155.
  23. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  24. Min, K. H., Ryu, J. P., Kim, J. M., Kim, S. H., Yim, S. H., Choi, J. J. et al. 2014. Control efficacy of the mixture of fluxapyroxad plus pyraclostrobin against Pear scab caused by Venturia nashicola. Korean J. Pestic. Sci. 18: 434-438. https://doi.org/10.7585/kjps.2014.18.4.434
  25. Myung, I. S., Yoon, M. J., Lee, J. Y., Kim, Y., Kwon, J. H., Lee, Y. K. et al. 2015. Bacterial spot of hot pepper, caused by Xanthomonas euvesicatoria, a new disease in Korea. Plant Dis. 99: 1640.
  26. Obradovic, A., Jones, J., Momol, M., Balogh, B. and Olson, S. 2004. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 88: 736-740. https://doi.org/10.1094/PDIS.2004.88.7.736
  27. Oostendorp, M., Kunz, W., Dietrich, B. and Staub, T. 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107: 19-28. https://doi.org/10.1023/A:1008760518772
  28. Schreiber, K. and Desveaux, D. 2008. Message in a bottle: chemical biology of induced disease resistance in plants. Plant Pathol. J. 24: 245-268. https://doi.org/10.5423/PPJ.2008.24.3.245
  29. Skandalis, N., Dimopoulou, A., Beri, D., Tzima, A., Malandraki, I., Theologidis, I. et al. 2016. Effect of pyraclostrobin application on viral and bacterial diseases of tomato. Plant Dis. 100: 1321-1330. https://doi.org/10.1094/PDIS-10-15-1216-RE
  30. Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J. D., Paret, M. L. et al. 2015. Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol. 16: 907-920. https://doi.org/10.1111/mpp.12244
  31. Turechek, W. W., Peres, N. A. and Werner, N. A. 2006. Pre-and postinfection activity of pyraclostrobin for control of anthracnose fruit rot of strawberry caused by Colletotrichum acutatum. Plant Dis. 90: 862-868. https://doi.org/10.1094/PD-90-0862
  32. Udayashankar, A. C., Nayaka, C. S., Archana, B., Nayak, U., Niranjana, S. R. and Prakash, H. 2012. Strobilurins seed treatment enhances resistance of common bean against bean common mosaic virus. J. Phytopathol. 160: 710-716.
  33. Vigo, S. C., Maringoni, A. C., Camara, R. C. and Lima, G. P. P. 2012. Evaluation of pyraclostrobin and acibenzolar-S-methyl on common bacterial blight of snap bean. Semin. Cienc. Agrar. 33: 167-173.
  34. Yoo, S. H. 2009. List of Plant Diseases in Korea. 5th ed. The Korean Society of Plant Pathology, Suwon, Korea. 76 pp.
  35. Young, J., Dye, D., Bradbury, J., Panagopoulos, C. and Robbs, C. 1978. A proposed nomenclature and classification for plant pathogenic bacteria. N. Z. J. Agric. Res. 21: 153-177. https://doi.org/10.1080/00288233.1978.10427397