모과 부탄올 분획의 예쁜꼬마선충 내의 항산화 효과

Antioxidant Activity of n-Butanol Fraction of Chaenomeles sinensis Fruit in Caenorhabditis elegans

  • 투고 : 2018.03.09
  • 심사 : 2018.03.20
  • 발행 : 2018.03.31

초록

Chaenomeles sinensis (Thouin) Koehne fruit (Rosaceae) has been used as a traditional medicine in Korea, Japan and China to treat sore throat, diarrhea and inflammation. The ethanol extract of C. sinensis fruit was successively partitioned as methylene chloride, ethyl acetate, n-butanol and $H_2O$ soluble fractions. Among those fractions, the n-butanol fraction showed the most potent DPPH radical scavenging and superoxide quenching activities. To verify antioxidant activities, the n-butanol fraction was checked the activities of superoxide dismutase (SOD) and catalase activities, and intracellular ROS levels and oxidative stress tolerance in Caenorhabditis elegans. Furthermore, to see if increased stress tolerance of worms by treating of the n-butanol fraction was due to regulation of stress-response gene, we quantified SOD-3 expression using transgenic strain. Consequently, the n-butanol fraction elevated SOD and catalase activities of C. elegans, and reduced intracellular ROS accumulation in a dose-dependent manner. Moreover, the n-butanol fraction-treated CF1553 worms exhibited significantly higher SOD-3::GFP intensity.

키워드

참고문헌

  1. Kose, L. P., Gulcin, I., Goren, A. C., Namiesnik, J., Martinez-Ayala, A. L. and Gorinstein, S. (2015) LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 74: 712-721. https://doi.org/10.1016/j.indcrop.2015.05.034
  2. Panieri, E. and Santoro, M. M. (2016) ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 7: e2253. https://doi.org/10.1038/cddis.2016.105
  3. Reina, M. and Martinez, A. (2018) A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput. Theor. Chem. 1123: 111-118. https://doi.org/10.1016/j.comptc.2017.11.017
  4. Dai, Y., Shao, C., Piao, Y., Hu, H., Lu, K., Zhang, T., Jia, S., Wang, M. and Man, S. (2017) The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical. Carbohydr. Polym. 178: 34-40. https://doi.org/10.1016/j.carbpol.2017.09.016
  5. Ang, L. Z. P., Hashim, R., Sulaiman, S. F., Coulibaly, A. Y., Sulaiman, O., Kawamura, F. and Salleh, K. M. (2015) In vitro antioxidant and antidiabetic activites of Gluta torquata. Ind. Crops Prod. 76: 755-760. https://doi.org/10.1016/j.indcrop.2015.07.065
  6. Karthishwaran, K., Shamisi, S. O. S. O. A., Kurup, S. S., Sakkir, S. and Cheruth, A. J. (2018) Free-radical-scavenging and antioxidant capacities with special emphasis on enzyme activities and in vitro studies in Caralluma flava N. E. Br. Biotechnology & Biotechnological Equipment 32: 156-162. https://doi.org/10.1080/13102818.2017.1379362
  7. Jeszka-Skowron, M., Stanisz, E. and De Pena, M. P. (2016) Relationship between antioxidant capacity, chlorogenic acids and elemental composition of green coffee. LWT-Food Sci. Tech. 73: 243-250. https://doi.org/10.1016/j.lwt.2016.06.018
  8. Gallego, M., Mora, L., Reig, M. and Toldra, F. (2018) Stability of the potent antioxidant peptide SNAAC identified from Spanish dry-cured ham. Food Res. Int. 105: 873-879. https://doi.org/10.1016/j.foodres.2017.12.006
  9. Zhang, M., Zhao, R., Zhou, S., Liu, W., Liang, Y., Zhao, Z., Li, S., Wang, T., Wong, T. and Zhao, H. (2018) Chemical characterization and evaluation of the antioxidants in Chaenomeles fruits by an improved HPLC-TOF/MS coupled to an on-line DPPH-HPLC method. J. Environ. Sci. Health C. 36: 43-62. https://doi.org/10.1080/10590501.2017.1418814
  10. Nagahora, N., Ito, Y. and Nagasawa, T. (2013). Dietary chinese quince polyphenols suppress generation of ${\alpha}$-dicarbonyl compounds in diabetic KK-A y mice. J. Agric. Food Chem. 61: 6629-6635.
  11. Yoshida, T., Mori, K., Hatano, T., Okumura, T., Uehara, I., Komagoe, K., Fujita, Y. and Okuda, T. (1989) Studies on inhibition mechanism of autooxidation by tannins and flavonoids. V: Radical scavenging effects of tannins and related polyphenols on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 1919-1921. https://doi.org/10.1248/cpb.37.1919
  12. Ginnopolitis, C. N. and Ries, S. K. (1977) Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. Biochem. 59: 309-314.
  13. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
  14. Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabditis elegans. J. Med. Chem. 55: 4169-4177. https://doi.org/10.1021/jm2014315
  15. Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105: 121-126.
  16. Kim, H. N., Seo, H. W., Kim, B. S., Lim H. J., Lee, H, N., Park, J. S., Yoon, Y. J., Oh, J. W., Oh, M. J., Kwon, J., Oh, C. H., Cha, D. S. and Jeon, H. (2015) Lindera obtusiloba extends lifespan of Caenorhabditis elegans. Nat. Prod. Sci. 21: 128-133.
  17. Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936. https://doi.org/10.1016/j.bbrc.2005.01.050
  18. Nagahora, N., Ito, Y. and Nagasawa, T. (2013) Dietary Chinese quince polyphenols suppress generation of ${\alpha}$-dicarbonyl compounds in diabetic KK-Ay mice. J. Agric. Food. Chem. 61: 6629-6635. https://doi.org/10.1021/jf401231j
  19. Sancheti, S., Sancheti, S., Bafna, M. and Seo, S. Y. (2010) Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur. Food Res. Technol. 231: 415-421. https://doi.org/10.1007/s00217-010-1291-x
  20. Azarabadi, S., Abdollahi, H., Torabi, M., Salehi, Z. and Nasiri, J. (2016) ROS generation, oxidative burst and dynamic expression profiles of ROS-scavenging enzymes of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in response to Erwinia amylovora in pear (Pyrus communis L). Eur. J. Plant Pathol. 147: 279-294.
  21. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. and Shimomura, L. (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114: 1752-1761.
  22. Wang, Y., Wang, W., Wang, N., Tall, A. R. and Tabas, I. (2017) Mitochondrial oxidative stress promotes atherosclerosis and neutrophil extracellular traps in aged mice. Arterioscler. Thromb. Vasc. Biol. 37: e99-e107. https://doi.org/10.1161/ATVBAHA.117.309580
  23. Kim, C. S., Subedi, L., Oh, J. S., Kim, S. Y., Choi, S. U. and Lee, K. R. (2017) Bioactive triterpenoids from the twigs of Chaenomeles sinensis. J. Nat. Prod. 80: 1134-1140. https://doi.org/10.1021/acs.jnatprod.7b00111
  24. Oku, H., Ueda, Y. and Ishiguro, K. (2003) Antipruritic effects of the fruits of Chaenomeles sinensis. Biol. Pharm. Bull. 26: 1031-1034. https://doi.org/10.1248/bpb.26.1031