DOI QR코드

DOI QR Code

Evaluation of Reproduced Precipitation by WRF in the Region of CORDEX-East Asia Phase 2

CORDEX-동아시아 2단계 영역 재현실험을 통한 WRF 강수 모의성능 평가

  • Ahn, Joong-Bae (Division of Earth Environmental System, Pusan National University) ;
  • Choi, Yeon-Woo (Division of Earth Environmental System, Pusan National University) ;
  • Jo, Sera (Division of Earth Environmental System, Pusan National University)
  • 안중배 (부산대학교 지구환경시스템학부) ;
  • 최연우 (부산대학교 지구환경시스템학부) ;
  • 조세라 (부산대학교 지구환경시스템학부)
  • Received : 2017.12.26
  • Accepted : 2018.02.20
  • Published : 2018.03.31

Abstract

This study evaluates the performance of the Weather Research and Forecasting (WRF) model in reproducing the present-day (1981~2005) precipitation over Far East Asia and South Korea. The WRF model is configured with 25-km horizontal resolution within the context of the COordinated Regional climate Downscaling Experiment (CORDEX) - East Asia Phase 2. The initial and lateral boundary forcing for the WRF simulation are derived from European Centre for Medium-Range Weather Forecast Interim reanalysis. According to our results, WRF model shows a reasonable performance to reproduce the features of precipitation, such as seasonal climatology, annual and inter-annual variabilities, seasonal march of monsoon rainfall and extreme precipitation. In spite of such model's ability to simulate major features of precipitation, systematic biases are found in the downscaled simulation in some sub-regions and seasons. In particular, the WRF model systematically tends to overestimate (underestimate) precipitation over Far East Asia (South Korea), and relatively large biases are evident during the summer season. In terms of inter-annual variability, WRF shows an overall smaller (larger) standard deviation in the Far East Asia (South Korea) compared to observation. In addition, WRF overestimates the frequency and amount of weak precipitation, but underestimates those of heavy precipitation. Also, the number of wet days, the precipitation intensity above the 95 percentile, and consecutive wet days (consecutive dry days) are overestimated (underestimated) over eastern (western) part of South Korea. The results of this study can be used as reference data when providing information about projections of fine-scale climate change over East Asia.

Keywords

References

  1. Adler, R. F., and Coauthors, 2003: The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979 - present). J. Hydrometeorol., 4, 1147-1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  2. Ahn, J.-B., Y.-W. Choi, S. Jo, and J.-Y. Hong, 2014: Projection of 21st century climate over Korean Peninsula: Temperature and precipitation simulated by WRFV3.4 based on RCP4.5 and 8.5 scenarios. Atmosphere, 24, 541-554, doi:10.14191/Atmos.2014.24.4.541 (in Korean with English abstract).
  3. Ahn, J.-B., and Coauthors, 2016: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pac. J. Atmos. Sci., 52, 223-236, doi:10.1007/s13143-016-0021-0.
  4. Betts, A. K., and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air.mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693-709, doi:10.1002/qj.49711247308.
  5. Cha, D.-H., and D.-K. Lee, 2009: Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. J. Geophys. Res., 114, D14108, doi:10.1029/2008JD011176.
  6. Cha, D.-H., and Coauthors, 2016: Future changes in summer precipitation in regional climate simulations over the Korean Peninsula forced by multi-RCP scenarios of HadGEM2-AO. Asia-Pac. J. Atmos. Sci., 52, 139-149, doi:10.1007/s13143-016-0015-y.
  7. Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
  8. Choi, Y.-W., J.-B. Ahn, M.-S. Suh, D.-H. Cha, S.-Y. Hong, S.-K. Min, S.-C. Park, and H.-S. Kang, 2016: Future changes in drought characteristics over South Korea using multi regional climate models with the standardized precipitation index. Asia-Pac. J. Atmos. Sci., 52, 209-222, doi:10.1007/s13143-016-0020-1.
  9. Choi, Y.-W., and J. B. Ahn, 2017: Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model. Atmosphere, 27, 105-118, doi:10.14191/Atmos.2017.27.1.105 (in Korean with English abstract).
  10. Collins, W. D., J. K. Hackney, and D. P. Edwards, 2002: An updated parameterization for infrared emission and absorption by water vapor in the National Center for Atmospheric Research Community Atmosphere Model. J. Geophys. Res., 107, 17-20, doi:10.1029/2001JD001365.
  11. DelSole, T., and J. Shukla, 2006: Specification of wintertime North American surface temperature. J. Climate, 19, 2691-2716, doi:10.1175/JCLI3704.1.
  12. Giorgi, F., and W. J. Gutowski, 2015: Regional Dynamical Downscaling and the CORDEX Initiative. Annu. Rev. Env. Resour., 40, 467-490, doi:10.1146/annurev-environ-102014-021217.
  13. Grell, G. A., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, 38-1-38-4, doi:10.1029/2002GL015311.
  14. Hong, J.-Y., and J.-B. Ahn, 2015: Changes of Early Summer Precipitation in the Korean Peninsula and Nearby Regions Based on RCP Simulations. J. Climate, 28, 3557-3578, doi:10.1175/JCLI-D-14-00504.1.
  15. Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103-120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.
  16. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/MWR3199.1.
  17. Huang, B., S. Polanski, and U. Cubasch, 2015: Assessment of precipitation climatology in an ensemble of CORDEX-East Asia regional climate simulations. Climate Res., 64, 141-158, doi:10.3354/cr01302.
  18. Huffman, G. J., D. T. Bolvin, E. J. Nelkin, D. B. Wolff, R. F. Adler, G. Gu, Y. Hong, K. P. Bowman, and E. F. Stocker, 2007: The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38-55, doi:10.1175/JHM560.1.
  19. Im, E.-S., J.-B. Ahn, and S.-R. Jo, 2015: Regional climate projection over South Korea simulated by the Had-GEM2-AO and WRF model chain under RCP emission scenarios. Climate Res., 63, 249-266, doi:10.3354/cr01292.
  20. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Robust intensification of hydroclimatic intensity over East Asia from multi-model ensemble regional projections. Theor. Appl. Climatol., 129, 1241-1254, doi:10.1007/s00704-016-1846-2.
  21. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. Stocker, T. F. et al. Eds., Cambridge University Press.
  22. Janjic, Z. I., 1994: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Wea. Rev., 122, 927-945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
  23. Jin, C.-S., D.-H. Cha, D.-K. Lee, M.-S. Suh, S.-Y. Hong, H.-S. Kang, and C.-H. Ho, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765-778, doi:10.1007/s00382-015-2869-6.
  24. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
  25. Lee, D., and Coauthors, 2016a: Time of emergence of anthropogenic warming signals in the Northeast Asia assessed from multi-regional climate models. Asia-Pac. J. Atmos. Sci., 52, 129-137, doi:10.1007/s13143-016-0014-z.
  26. Lee, D., C. Park, Y.-H. Kim, and S.-K. Min, 2016b: Evaluation of the COSMO-CLM for East Asia climate simulations: Sensitivity to spectral nudging. J. Clim. Res., 11, 69-85, doi:10.14383/cri.2016.11.1.69 (in Korean with English abstract).
  27. Lee, D., and Coauthors, 2017a: Thermodynamic and dynamic contributions to future changes in summer precipitation over Northeast Asia and Korea: a multi-RCM study. Climate Dyn., 49, 4121-4139, doi:10.1007/s00382-017-3566-4.
  28. Lee, G., D. H. Cha, and C. Park, 2017b: Improvement of Extreme Summer Precipitation over South Korea in APHRODITE Data. J. Climate Res., 12, 41-51, doi:10.14383/cri.2017.12.1.41 (in Korean with English abstract).
  29. Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Climate Dyn., 42, 733-747, doi:10.1007/s00382-013-1841-6.
  30. Oh, S.-G., M.-S. Suh, J.-S. Myoung, and D.-H. Cha, 2011: Impact of boundary conditions and cumulus parameterization schemes on regional climate simulation over South-Korea in the CORDEX-East Asia domain using the RegCM4 model. J. Korean Earth Sci. Soc., 32, 373-387, doi:10.5467/JKESS.2011.32.4.373 (in Korean with English abstract).
  31. Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res., 119, 2913-2927, doi:10.1002/2013JD020693.
  32. Oh, S.-G., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multipleregional climate models based on four RCP scenarios. Part 2: precipitation. Asia.-Pac. J. Atmos. Sci., 52, 171-189, doi:10.1007/s13143-016-0018-8.
  33. Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res., 118, 1652-1667, doi:10.1002/jgrd.50159.
  34. Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsl., 110, 25-35.
  35. Suh, M.-S., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature. Asia.-Pac. J. Atmos. Sci., 52, 151-169, doi:10.1007/s13143-016-0017-9.
  36. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183-7192, doi:10.1029/2000JD900719.
  37. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An Overview of CMIP5 and the Experiment Design. Bull. Amer. Meteor. Soc., 93, 485-498, doi:10.1175/BAMSD-11-00094.1.
  38. von Storch, H., H. Langenberg, and F. Feser, 2000: A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev., 128, 3664-3673, doi:10.1175/1520-0493(2000)128<3664:ASNTFD>2.0.CO;2.
  39. Wang, B., and LinHo, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386-398, doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2.
  40. WCRP, 2014: Report of the first session of the CORDEX Science Advisory Team (SAT), WCRP Report No. 14/2014, 29 pp.
  41. Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi, and A. Kitoh, 2012: APHRODITE Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Amer. Meteor. Soc., 93, 1401-1415, doi:10.1175/BAMS-D-11-00122.1.
  42. Zou, L., T. Zhou, and D. Peng, 2016: Dynamical downscaling of historical climate over CORDEX East Asia domain: A comparison of regional ocean-atmosphere coupled model to stand-alone RCM simulations. J. Geophys. Res., 121, 1442-1458, doi:10.1002/2015JD023912.