References
- Hancock Friesen CL, Forbess JM. Surgical management of the single ventricle. Prog Pediatr Cardiol 2002;16:47-68 https://doi.org/10.1016/S1058-9813(02)00044-9
- Schwalbe-Terilli CR, Hartman DH, Nagle ML, et al. Enteral feeding and caloric intake in neonates after cardiac surgery. Am J Crit Care 2009;18:52-57 https://doi.org/10.4037/ajcc2009405
- Anderson JB, Beekman RH 3rd, Eghtesady P, et al. Predictors of poor weight gain in infants with a single ventricle. J Pediatr 2010;157:407-413, 413 e401 https://doi.org/10.1016/j.jpeds.2010.04.012
- Nydegger A, Bines JE. Energy metabolism in infants with congenital heart disease. Nutrition 2006;22:697-704 https://doi.org/10.1016/j.nut.2006.03.010
- Leitch CA. Growth, nutrition and energy expenditure in pediatric heart failure. Prog Pediatr Cardiol 2000;11:195-202 https://doi.org/10.1016/S1058-9813(00)00050-3
- Di Maria MV, Glatz AC, Ravishankar C, et al. Supplemental tube feeding does not mitigate weight loss in infants with shunt-dependent single-ventricle physiology. Pediatr Cardiol 2013;34:1350-1356 https://doi.org/10.1007/s00246-013-0648-x
- Fox-Wheeler S, Heller L, Salata CM, et al. Evaluation of the effects of oxandrolone on malnourished HIV-positive pediatric patients. Pediatrics 1999;104:e73 https://doi.org/10.1542/peds.104.6.e73
- Porro LJ, Herndon DN, Rodriguez NA, et al. Five-year outcomes after oxandrolone administration in severely burned children: a randomized clinical trial of safety and efficacy. J Am Coll Surg 2012;214:489-502; discussion 502-484 https://doi.org/10.1016/j.jamcollsurg.2011.12.038
- Rosenfeld RG, Frane J, Attie KM, et al. Six-year results of a randomized, prospective trial of human growth hormone and oxandrolone in Turner syndrome. J Pediatr 1992;121:49-55 https://doi.org/10.1016/S0022-3476(05)82540-5
- Wilson DM, McCauley E, Brown DR, Dudley R. Oxandrolone therapy in constitutionally delayed growth and puberty. Bio-Technology General Corporation Cooperative Study Group. Pediatrics 1995;96:1095-1100
- Hart DW, Wolf SE, Ramzy PI, et al. Anabolic effects of oxandrolone after severe burn. Ann Surg 2001;233:556-564 https://doi.org/10.1097/00000658-200104000-00012
- Przkora R, Jeschke MG, Barrow RE, et al. Metabolic and hormonal changes of severely burned children receiving long-term oxandrolone treatment. Ann Surg 2005;242:384-389, discussion 390-381
- Wolf SE, Thomas SJ, Dasu MR, et al. Improved net protein balance, lean mass, and gene expression changes with oxandrolone treatment in the severely burned. Ann Surg 2003;237:801-810; discussion 810-801
- Reddy VM, Meyrick B, Wong J, et al. In utero placement of aortopulmonary shunts. A model of postnatal pulmonary hypertension with increased pulmonary blood flow in lambs. Circulation 1995;92:606-613 https://doi.org/10.1161/01.CIR.92.3.606
- Neubauer S. The failing heart--an engine out of fuel. N Engl J Med 2007;356:1140-1151 https://doi.org/10.1056/NEJMra063052
- Bottomley PA, Hardy CJ. Mapping creatine kinase reaction rates in human brain and heart with 4 tesla saturation transfer 31P NMR. J Magn Reson 1992;99:443-448
- Bottomley PA, Ouwerkerk R, Lee RF, Weiss RG. Fourangle saturation transfer (FAST) method for measuring creatine kinase reaction rates in vivo. Magn Reson Med 2002;47:850-863 https://doi.org/10.1002/mrm.10130
- Xiong Q, Li Q, Mansoor A, et al. Novel strategy for measuring creatine kinase reaction rate in the in vivo heart. Am J Physiol Heart Circ Physiol 2009;297:H1010-1019 https://doi.org/10.1152/ajpheart.01195.2008
- Schar M, El-Sharkawy AM, Weiss RG, Bottomley PA. Triple repetition time saturation transfer (TRiST) 31P spectroscopy for measuring human creatine kinase reaction kinetics. Magn Reson Med 2010;63:1493-1501
- Schar M, Gabr RE, El-Sharkawy AM, Steinberg A, Bottomley PA, Weiss RG. Two repetition time saturation transfer (TwiST) with spill-over correction to measure creatine kinase reaction rates in human hearts. J Cardiovasc Magn Reson 2015;17:70 https://doi.org/10.1186/s12968-015-0175-4
- Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study. NMR Biomed 2014;27:663-671 https://doi.org/10.1002/nbm.3103
- Clarke WT, Robson MD, Neubauer S, Rodgers CT. Creatine kinase rate constant in the human heart measured with 3D-localization at 7 tesla. Magn Reson Med 2017;78:20-32 https://doi.org/10.1002/mrm.26357
- Ugurbil K. Magnetization-transfer measurements of individual rate constants in the presence of multiple reactions. J Magn Reson 1985;64:207-219
- Kingsley-Hickman PB, Sako EY, Mohanakrishnan P, et al. 31P NMR studies of ATP synthesis and hydrolysis kinetics in the intact myocardium. Biochemistry 1987;26:7501-7510 https://doi.org/10.1021/bi00397a045
- Kingsley PB, Monahan WG. Corrections for off-resonance effects and incomplete saturation in conventional (twosite) saturation-transfer kinetic measurements. Magn Reson Med 2000;43:810-819 https://doi.org/10.1002/1522-2594(200006)43:6<810::AID-MRM6>3.0.CO;2-J
- Jeong EK, Sung YH, Kim SE, et al. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume 31P/1H radiofrequency coil in a clinical 3-T MRI system. NMR Biomed 2011;24:765-770 https://doi.org/10.1002/nbm.1636
- Potter W, Wang L, McCully K, Zhao Q. Evaluation of a new 1H/31P dual-tuned birdcage coil for 31P spectroscopy. Concepts Magn Reson Part B Magn Reson Eng 2013;43:90-99 https://doi.org/10.1002/cmr.b.21239
- Thapa B, Dahl M, Frank D, Burch P, Jeong EK. Quantitaive evaluation of the first order rate constant of creatinekinase reaction in ovine heart using magntization transfer 31P magnetic resonance spectroscopy (MT-31P-MRS). In Proceedings of the 23rd Scientific Meeting of International Society for Magnetic Resonance in Medicine. Toronto, 2015:2003
- Thapa B, Kaggie J, Sapkota N, Frank D, Jeong EK. Design and development of a general-purpose transmit/receive (T/R) switch for MRI, compatible for a linear, quadrature and double-tuned RF coil. Concepts Magn Reson Part B Magn Reson Eng 2016;46B:56-65
- Adriany G, Gruetter R. A half-volume coil for efficient proton decoupling in humans at 4 tesla. J Magn Reson 1997;125:178-184 https://doi.org/10.1006/jmre.1997.1113
- Kaggie JD, Hadley JR, Badal J, et al. A 3 T sodium and proton composite array breast coil. Magn Reson Med 2014;71:2231-2242 https://doi.org/10.1002/mrm.24860
- Thapa B, Kaggie J, Sapkota N, Jeong EK. Design and develpoment of general purpose transmit-receive (TR) switch for a linear, quadrature and dual tuned coils. In Proceedings of the 23rd Scientific Meeting of International Society for Magnetic Resonance in Medicine. Toronto, 2015:1784
- Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A 2005;102:808-813 https://doi.org/10.1073/pnas.0408962102
- Smith CS, Bottomley PA, Schulman SP, Gerstenblith G, Weiss RG. Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation 2006;114:1151-1158 https://doi.org/10.1161/CIRCULATIONAHA.106.613646
- Abraham MR, Bottomley PA, Dimaano VL, et al. Creatine kinase adenosine triphosphate and phosphocreatine energy supply in a single kindred of patients with hypertrophic cardiomyopathy. Am J Cardiol 2013;112:861-866 https://doi.org/10.1016/j.amjcard.2013.05.017
- Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS. Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 1995;91:1824-1833 https://doi.org/10.1161/01.CIR.91.6.1824
- Chesky JA, Rockstein M, Lopez T. Changes with age of myocardial creatine phosphokinase in the male Fischer rat. Mech Ageing Dev 1980;12:237-243 https://doi.org/10.1016/0047-6374(80)90046-9
- Chen C, Guerrero JL, Vazquez de Prada JA, et al. Intracardiac ultrasound measurement of volumes and ejection fraction in normal, infarcted, and aneurysmal left ventricles using a 10-MHz ultrasound catheter. Circulation 1994;90:1481-1491 https://doi.org/10.1161/01.CIR.90.3.1481
- Wisneski JA, Pfeil CN, Wyse DG, Mitchell R, Rahimtoola SH, Gertz EW. Left ventricular ejection fraction calculated from volumes and areas: underestimation by area method. Circulation 1981;63:149-151 https://doi.org/10.1161/01.CIR.63.1.149
- Rich S, Chomka EV, Stagl R, Shanes JG, Kondos GT, Brundage BH. Determination of left ventricular ejection fraction using ultrafast computed tomography. Am Heart J 1986;112:392-396 https://doi.org/10.1016/0002-8703(86)90280-2
- Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 2000;21:1387-1396 https://doi.org/10.1053/euhj.2000.2011
- Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JA, Bluemke DA. Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 2008;28:60-66 https://doi.org/10.1002/jmri.21405