DOI QR코드

DOI QR Code

Comparison of Microbial Community Structure in Kiwifruit Pollens

  • Kim, Min-Jung (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Jeon, Chang-Wook (Dvision of Applied Life Science (BK21plus), Gyeongsang National University) ;
  • Cho, Gyongjun (Dvision of Applied Life Science (BK21plus), Gyeongsang National University) ;
  • Kim, Da-Ran (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kwack, Yong-Bum (Namhae Sub-Station, NIHHS, RDA) ;
  • Kwak, Youn-Sig (Department of Plant Medicine, Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2017.12.26
  • Accepted : 2018.01.31
  • Published : 2018.04.01

Abstract

Flowers of kiwifruit are morphologically hermaphroditic and survivable binucleate pollen is produced by the male flowers. In this study, we investigated microbial diversity in kiwifruit pollens by analyzing amplicon sequences of 16S rRNA. Four pollen samples were collected: 'NZ' was imported from New Zealand, 'CN' from China in year of 2014, respectively. 'KR13' and 'KR14' were collected in 2013' and 2014' in South Korea. Most of the identified bacterial phyla in the four different pollens were Proteobacteria, Actinobacteria and Firmicutes. However, the imported and the domestic pollen samples showed different aspects of microbial community structures. The domestic pollens had more diverse in diversity than the imported samples. Among top 20 OTUs, Pseudomonas spp. was the most dominant specie. Interestingly, a bacterial pathogen of kiwifruit canker, Pseudomonas syringae pv. actinidiae was detected in 'NZ' by the specific PCR. This study provides insights microbial distribution and community structure information in kiwifruit pollen.

Keywords

References

  1. Ambika Manirajan, B., Ratering, S., Rusch, V., Schwiertz, A., Geissler-Plaum, R., Cardinale, M. and Schnell, S. 2016. Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity. Environ. Microbiol. 18:5161-5174. https://doi.org/10.1111/1462-2920.13524
  2. Behrendt, U., Ulrich, A. and Schumann, P. 2003. Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J. Syst. Evol. Microbiol. 53:1461-1469. https://doi.org/10.1099/ijs.0.02567-0
  3. Berendsen, R. L., Pieterse, C. M. and Bakker, P. A. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17:478-486. https://doi.org/10.1016/j.tplants.2012.04.001
  4. Berg, G., Roskot, N., Steidle, A., Eberl, L., Zock, A. and Smalla, K. 2002. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 68:3328-3338. https://doi.org/10.1128/AEM.68.7.3328-3338.2002
  5. Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu Rev. Plant Biol. 64:807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
  6. Coats, V. C., Pelletreau, K. N. and Rumpho, M. E. 2014. Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergii DC.). Mol. Ecol. 23:1318-1332. https://doi.org/10.1111/mec.12544
  7. Daniel, R. 2005. The metagenomics of soil. Nat. Rev. Microbiol. 3:470-478. https://doi.org/10.1038/nrmicro1160
  8. Donati, I., Buriani, G., Cellini, A., Mauri, S., Costa, G. and Spinelli, F. 2014. New insights on the bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). J. Berry Res. 4:53-67. https://doi.org/10.3233/JBR-140073
  9. Fraser, L. G., Tsang, G. K., Datson, P. M., De Silva, H. N., Harvey, C. F., Gill, G., Crowhurst, R. N. and McNeilage, M. A. 2009. A gene-rich linkage map in the dioecious species Actinidia chinensis (kiwifruit) reveals putative X/Y sex-determining chromosomes. BMC Genomics 10:102. https://doi.org/10.1186/1471-2164-10-102
  10. Gilbert, J. A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedge, J., Ley, R., Fierer, N., Field, D., Kyrpides, N., Glockner, F., Klenk, H., Wommack, K. E., Glass, E., Docherty, K., Gallery, R., Stevens, R. and Knight, R. 2010. The Earth Microbiome Project: meeting report of the "1st EMP meeting on sample selection and acquisition" at Argonne National Laboratory October 6th 2010. Stand Genomic Sci. 3:249. https://doi.org/10.4056/aigs.1443528
  11. Gu, Y. and Mazzola, M. 2003. Modification of fluorescent pseudomonad community and control of apple replant disease induced in a wheat cultivar-specific manner. Appl. Soil Ecol. 24:57-72. https://doi.org/10.1016/S0929-1393(03)00066-0
  12. Johnston-Monje, D., Lundberg, D. S., Lazarovits, G., Reis, V. M. and Raizada, M. N. 2016. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405:337-355. https://doi.org/10.1007/s11104-016-2826-0
  13. Kim, G. H., Jung, J. S. and Koh, Y. J. 2017. Occurrence and epidemics of bacterial canker of kiwifruit in Korea. Plant Pathol. J. 33:351-361. https://doi.org/10.5423/PPJ.RW.01.2017.0021
  14. Kwon, S., Kim, T., Yu, G. H., Jung, J. and Park, H. 2010. Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J. Microbiol. Biotechnol. 20:1717-1723.
  15. Lopez-Velasco, G., Carder, P. A., Welbaum, G. E. and Ponder, M. A. 2013. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol. Lett. 346:146-154. https://doi.org/10.1111/1574-6968.12216
  16. Luo, M., Sheng, Q., Wang, L. C. and Zhang, X. 2018. First report of fruit spot on pepper caused by Erwinia aphidicola in China. Plant Dis. URL https://doi.org/10.1094/PDIS-08-17-1146-PDN/.
  17. Marin, F., Santos, M., Carretero, F., Yau, J. A. and Dianez, F. 2011. Erwinia aphidicola isolated from commercial bean seeds (Phaseolus vulgaris). Phytoparasitica 39:483-489. https://doi.org/10.1007/s12600-011-0190-4
  18. Maurhofer, M., Keel, C., Haas, D. and Defago, G. 1995. Influence of plant species on disease suppression by Pseudomonas fluorescens strain CHAO with enhanced antibiotic production. Plant Pathol. 44:40-50. https://doi.org/10.1111/j.1365-3059.1995.tb02714.x
  19. Noh, S. W., Seo, R., Park, J. K., Manir, M. M., Park, K., Sang, M. K., Moon, S. S. and Jung, H. W. 2017. Cyclic Dipeptides from Bacillus vallismortis BS07 require key components of plant immunity to induce disease resistance in Arabidopsis against Pseudomonas Infection. Plant Pathol. J. 33:402-409. https://doi.org/10.5423/PPJ.OA.11.2016.0255
  20. Obersteiner, A., Gilles, S., Frank, U., Beck, I., Haring, F., Ernst, D., Rothballer, M., Hartmann, A., Traidl-Hoffmann, C. and Schmid, M. 2016. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS One 11:e0149545. https://doi.org/10.1371/journal.pone.0149545
  21. Rees-George, J., Vanneste, J. L., Cornish, D. A., Pushparajah, I. P. S., Yu, J., Templeton, M. D. and Everett, K. R. 2010. Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S-23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathol. 59:453-464. https://doi.org/10.1111/j.1365-3059.2010.02259.x
  22. Roesch, L. F. W., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., Daroub, S. H., Camargo, F. A. O., Farmerie, W. G. and Triplett, E. W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1:283-290. https://doi.org/10.1038/ismej.2007.53
  23. Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J. and Goodman, R. M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  24. Sorensen, J. 1997. The rhizosphere as a habitat for soil microorganisms. In: Modern soil microbiol, pp. 21-45. Marcel Dekker Incorporated, NY, USA.
  25. Tontou, R., Giovanardi, D. and Stefani, E. 2014. Pollen as a possible pathway for the dissemination of Pseudomonas syringae pv. actinidiae and bacterial canker of kiwifruit. Phytopathol. Mediterr. 53:333.
  26. Vorholt, J. A. 2012. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10:828-840. https://doi.org/10.1038/nrmicro2910
  27. Whipps, J., Hand, P., Pink, D. and Bending, G. D. 2008. Phyllosphere microbiology with special reference to diversity and plant genotype. J. Appl. Microbiol. 105:1744-1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x
  28. Yang, C. H. and Crowley, D. E. 2000. Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl. Environ. Microbiol. 66:345-351. https://doi.org/10.1128/AEM.66.1.345-351.2000

Cited by

  1. Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01563