References
- Box GEP and Jenkins GM (1976). Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco.
- Breiman L (2001). Random forests, Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
-
Chaloulakou A, Kassomenos P, Spyrellis N, Demokritou P, and Koutrakis P (2003). Measurements of
$PM_{10}$ and$PM_{2.5}$ particle concentrations in Athens, Greece, Atmospheric Environment, 37, 649-660. https://doi.org/10.1016/S1352-2310(02)00898-1 -
Cheng S,Wang F, Li J, Chen D, Li M, Zhou Y, and Ren Z (2013). Application of trajectory clustering and source apportionment methods for investigating trans-boundary atmospheric
$PM_{10}$ pollution, Aerosol and Air Quality Research, 13, 333-342. - Cortes C and Vapnik V (1995). Support-vector networks, Machine Learning, 20, 273-297.
- Friedman JH (2002). Stochastic gradient boosting, Computational Statistics & Data Analysis, 38, 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2
- Granger CWJ and Roselyne J (1980). An introduction to long-memory time series model and frac-tional differencing. Journal of Time Series Analysis, 1, 15-29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
- Hastie T, Tibshirani R, and Friedman J (2009). The Elements of Statistical Learning : Data Mining, Inference, and Prediction (2nd ed), Springer-Verlag, New York.
-
Hooyberghs J, Mensink C, Dumont G, Fierens F, and Brasseur O (2005). A neural network forecast for daily average
$PM_{10}$ concentrations in Belgium, Atmospheric Environment, 39, 3279-3289. https://doi.org/10.1016/j.atmosenv.2005.01.050 - Kubat M, Holte R, and Matwin S (1997). Learning when negative examples abound. In Proceedings of the 9th European Conference on Machine Learning (pp. 146-153), Springer, London.
-
Nejadkoorki F and Baroutian S (2012). Forecasting extreme
$PM_{10}$ concentrations using artificial Neural Networks, International Journal of Environmental Research, 6, 277-284. - Park C, Kim Y, Kim J, Song J, and Choi H (2011). Datamining using R, Kyowoo, Seoul.
-
Perez P and Reyes J (2006). An integrated neural network model for
$PM_{10}$ forecasting, Atmospheric Environment, 40, 2845-2851. https://doi.org/10.1016/j.atmosenv.2006.01.010 -
Poggi JM and Portier B (2011).
$PM_{10}$ forecasting using clusterwise regression, Atmospheric Environment, 45, 7005-7014. https://doi.org/10.1016/j.atmosenv.2011.09.016 - Ridgeway G (2012). Generalized Boosted Models: A guide to the gbm package, Accessed March 31, 2010, from: http://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf
-
Sayegh AS, Munir S, and Habeebullah TM (2014). Comparing the performance of statistical models for predicting
$PM_{10}$ concentrations, Aerosol and Air Quality Research, 14, 653-665. - Shaughnessy WJ, Venigalla MM, and Trump D (2015). Health effects of ambient levels of res-pirable particulate matter (PM) on healthy, young-adult population, Atmospheric Environment, 123, 102-111. https://doi.org/10.1016/j.atmosenv.2015.10.039
- Taneja K, Ahmad S, Ahmad K, and Attri SD (2016). Time series analysis of aerosol optical depth over New Delhi using Box-Jenkins ARIMA modeling approach, Atmospheric Pollution Research, 7, 585-596. https://doi.org/10.1016/j.apr.2016.02.004
-
Zuniga J, Tarajia M, Herrera V, Urriola W, Gomez B, and Motta J (2016). Assessment of the possible association of air pollutants
$PM_{10}$ ,$O_3$ ,$NO_2$ with an increase in cardiovascular, respiratory, and diabetes mortality in Panama City, Medicine, 95, e2464. https://doi.org/10.1097/MD.0000000000002464