DOI QR코드

DOI QR Code

Mining Frequent Service Patterns using Graph

그래프를 이용한 빈발 서비스 탐사

  • 황정희 (남서울대학교 컴퓨터학과)
  • Received : 2017.12.29
  • Accepted : 2018.03.25
  • Published : 2018.03.31

Abstract

As time changes, users change their interest. In this paper, we propose a method to provide suitable service for users by dynamically weighting service interests in the context of age, timing, and seasonal changes in ubiquitous environment. Based on the service history data presented to users according to the age or season, we also offer useful services by continuously adding the most recent service rules to reflect the changing of service interest. To do this, a set of services is considered as a transaction and each service is considered as an item in a transaction. And also we represent the association of services in a graph and extract frequent service items that refer to the latest information services for users.

시간의 변화에 따라 사용자의 관심도는 변화한다. 이 논문에서는 유비쿼터스 환경에서 연령, 시기, 계절 등에 따라 변화하는 사용자의 서비스 관심도를 고려하기 위하여 서비스에 대한 관심도를 동적 가중치로 부여하여 사용자에게 적합한 서비스를 추천하기 위한 방법을 제안한다. 사용자에게 제공한 서비스 이력 데이터를 기준으로 시기나 연령에 따른 일반적인 서비스 규칙을 저장하고, 실시간으로 변화하는 서비스의 관심도를 고려한 최신의 서비스 규칙을 지속적으로 추가하여 사용자의 관심 변화를 반영하는 서비스를 제공하기 위한 방법이다. 이를 위해 사용자에게 제공하는 일련의 서비스는 트랜잭션으로 고려하고 서비스는 항목으로 고려하여 서비스의 연관관계를 그래프로 표현하고, 이를 기반으로 빈발 서비스 항목을 발견한다. 발견된 빈발 서비스 항목은 사용자에게 유용한 최신의 정보 서비스를 의미한다.

Keywords

References

  1. C. F. Ahmed, S. K. Tanbeer and B. S. Jeong, "Efficient Mining of Weighted Frequent Patterns Over Data Streams," International Conference on High Performance Computing and Communications, pp.400-406, 2009.
  2. Y. Kim, W. Kim, U. Kim, "Mining Frequent Itemsets with Normalized Weight in Continuous Data Streams," Journal of Information Processing Systems, Vol.6, No.1, 2010.
  3. G.Chen, X. Wu and X. Zhu, "Mining Sequential Patterns Across Data Streams," Computer Science Technical Report(CS-05-04), 2005.
  4. C. K. S. Leung Q. I. Khan, T. Hoque, "CanTree:A Tree Structure for Efficient Incremental Mining of Frequent Pattern Sets," In proc. ICDM 2005.
  5. C. K. S. Leung Q. I. Khan, "DSTree:A Tree Structure for the Mining of Frequent Sets from Data Streams," In proc. ICDM 2006.
  6. J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," In Proc. of ACM SIGMOD International Conference on the Management of Data, 2000.
  7. J. Pei, J. Han, B. M. Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal and M. Hsu, "Mining Sequential Patterns by pattern-Growth: The PrefixSpan Approach," IEEE Transactions on Knowledge and Data Engineering, Vol.16, No.11, 2004.
  8. P. Chouksey, R.S. Thakur, R.C. Jain, "Exploring Interesting Multi-level patterns using graph based approach, In Proc. 4th Indian International Conference on Artificial Intelligence, pp 377-387, 2009.
  9. V. Tiwari, V. Tiwari, S. Gupta and R. Tiwari, "Association for Mining: A Graph Based Approach for Mining Frequent Itemsets," IEEE International Conference on Networking and Information Technology, 2010.
  10. A. Choubey, R. Patel, J.L. Rana, "Graph based new approach for frequent pattern mining," International Journal of Computer Science & Information Technology ,Vol 4, No 1, pp221-235, 2012. https://doi.org/10.5121/ijcsit.2012.4117
  11. D. Han, D. Kim, J. Kim, C. Na and B.Hwang, "A Method for Mining Interval Event Association Rules from a Set of Events Having Time Property," Journal of Korea Information Processing Society, Vol.16-D, No.2, pp.185-190, 2009.
  12. Y.Lee, J. Lee, D. Chai, B. Hwang and K. Ryu, "Mining Temporal Interval Relational Rules from Temporal Data," The Journal of Systems and Software, Vol. 82, No.1, pp.155-167, 2009. https://doi.org/10.1016/j.jss.2008.07.037
  13. S. Laxman, P. S. Sastry and K. Unnikrishnan, "Discovering Frequent Generalized Episodes where Events Persist for Different Durations," IEEE Transactions on Knowledge and Data Engineering, Vol.19, No.9, pp.1188-1201, 2007. https://doi.org/10.1109/TKDE.2007.1055
  14. Unil Yun, "Efficient mining of weighted interesting patterns with a strong weight and/or support affinity," Journal of Information Sciences, Vol.177(17), pp3477-3499, 2007. https://doi.org/10.1016/j.ins.2007.03.018
  15. Zhongliang Li1, Tengfei Zhou1, Haoran Zhang1, Guocai Yang, "IWFPM: Interested Weighted Frequent Pattern Mining with Multiple Supports," Journal of Software, Vol.10(1) pp.9-19, 2015. https://doi.org/10.17706/jsw.10.1.9-19
  16. Jeong Hee Hwang, Mining Association Rule on Service Data using Frequency and Weight," Journal of Digital Contents Society, Vol.17(2), 2016.