DOI QR코드

DOI QR Code

Traffic Volume Dependent Displacement Estimation Model for Gwangan Bridge Using Monitoring Big Data

교량 모니터링 빅데이터를 이용한 광안대교의 교통량 의존 변위 추정 모델

  • Received : 2017.08.30
  • Accepted : 2018.01.12
  • Published : 2018.04.01

Abstract

In this study a traffic volume dependent displacement estimation model for Gwangan Bridge was developed using bridge monitoring big data. Traffic volume data for four different vehicle types and the vertical displacement data in the central position of the Gwangan Bridge were used to develop and validate the estimation model. Two statistical estimation models were developed using multiple regression analysis (MRA) and principal component analysis (PCA). Estimation performance of those two models were compared with actual values. The results show that both the MRA and the PCA based models are successfully estimating the vertical displacement of Gwangan Bridge. Based on the results, it is concluded that the developed model can effectively be used to predict the traffic volume dependent displacement behavior of Gwangan Bridge.

본 연구에서는 차종별 교통량 데이터와 연직 변위 데이터의 상관관계를 바탕으로 광안대교의 차종별 교통량 데이터를 이용한 연직 변위 추정 모델을 개발하였다. 추정 모델의 개발 과정에서 구조화 회귀 분석에 기반한 모델링 방법과 주성분 분석법에 기반한 모델링 방법이 적용되었으며, 각각의 방법으로 개발된 모델의 변위 추정 성능을 비교 분석하였다. 개발된 모델을 이용하여 추정된 변위는 실측 변위와 유사한 것으로 분석되었으며, 이로부터 차종별 교통량 데이터를 광안대교의 교통량 의존 변위 추정에 적용 가능한 것을 알 수 있었다. 또한, 구조화 회귀 분석에 기반한 모델과 주성분 분석에 기반한 모델의 변위 추정 성능은 상호간에 큰 차이가 없다는 것을 알 수 있었다. 결론적으로 본 연구에서 개발한 차종별 교통량 데이터를 이용한 연직 변위 추정 모델은, 광안대교의 교통하중에 따른 거동 분석 등에 유효하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Bae, D. B. and Hwang, E. S. (2004). "Fatigue load model for the design of steel bridges." Journal of the Korean Society of Civil Engineers, Vol. 24, No. 1A, pp. 225-232 (in Korean).
  2. Chang, S. J. and Kim, N. S. (2010). "Applications of displacement response estimation algorithm using mode decomposition technique to existing bridges." Journal of the Korean Society of Civil Engineers, Vol. 30, No. 3A, pp. 257-264 (in Korean).
  3. Chi, S. H. (2016). "Big data analysis of unstructured documents and video images in the construction industry." Magazine of Korean Society of Civil Engineers, Vol. 64, No. 8, pp. 15-18 (in Korean).
  4. Gonzalez, A. (2010). Development of a Bridge Weigh-In-Motion System: A Technology to Convert the Bridge Response to the Passage of Traffic Into Data on Vehicle Configurations, Speeds, Times of Travel and Weights, Lambert Academic Publishing.
  5. Kaiser, H. F. (1974). "An index of factorial simplicity." Psychometrika, Vol. 39, No. 1, pp. 31-36. https://doi.org/10.1007/BF02291575
  6. Kim, H. J., Yoon, J. G., Lee, J. H. and Chang, S. P. (2005). "Analysis of long-term monitoring results of a Cable-Stayed Bridge using ARX model." Proceedings of KSCE 2005 Annual Conference, pp. 928-931 (in Korean).
  7. Oh, S. H. (2009). "An analysis of noise robustness for multilayer perceptrons and its improvements." Journal of the Korea Contents Association, Vol. 9, No. 1, pp. 159-166 (in Korean). https://doi.org/10.5392/JKCA.2009.9.1.159
  8. Park, J. C. (2015). "Evaluation of thermal movements of a Cable- Stayed Bridge using temperatures and displacements data." Journal of the Korean Society of Civil Engineers, Vol. 35, No. 4, pp. 779-789 (in Korean). https://doi.org/10.12652/Ksce.2015.35.4.0779
  9. Park, J. C., Park, C. M. and Song, P. Y. (2004). "Evaluation of structural behaviors using full scale measurements on the Seo Hae Cable-Stayed Bridge." Journal of the Korean Society of Civil Engineers, Vol. 24, No. 2A, pp. 249-257 (in Korean).
  10. Park, J. H. (2015). The Optimum Design of Expansion Joints by Long-Term Monitoring Data for the Diamond Bridge, Master Thesis, Pukyong National University (in Korean).
  11. Park, J. H. and Kim, S. Y. (2017). "Analysis of suspension bridge reinforced truss strain by traffic." 2017 Proceedings of KSMI Annual Conference, pp. 357-358 (in Korean).
  12. Park, J. S., Ro, S. K., Park, J. H., Nam, S. S. and Moon, D. J. (2013). "Correlation analysis between deflection and temperature in suspension bridge using GNSS and laser displacement sensor." Proceedings of KSMI 2013 Spring Conference, pp. 375-379 (in Korean).
  13. Song, J. J. (2016). SPSS/AMOS Statistical Analysis Method for Paper Writing, 21C Book Inc., Korea (in Korean).
  14. Sousa, H., Zavitsas, K., Polak, J. and Chryssanthopoulos, M. (2014). "Inferring asset live load distributions from traffic flow data: a new SHM opportunity?" EWSHM-7th European Workshop on Structural Health Monitoring., Nantes, France, pp. 435-442.
  15. Won, T. Y. and Jeong, S. W. (2015). Statistical Analysis - SPSS 18.0, Hannarae Book Inc., Korea (in Korean).
  16. Yang, Y. B., Yau, J. D. and Wu, Y. S. (2004). Vehicle-Bridge Interaction Dynamics, World Scientific Publishing Co., New Jersey, USA.
  17. Zhou, Y. and Chen, S. (2017). Dynamic Assessment of Bridge Deck Performance Considering Realistic Bridge-Traffic Interaction, No. MPC 17-333, North Dakota State University - Upper Great Plains Transportation Institute, Fargo: Mountain-Plains Consortium, North Dakota, USA.