DOI QR코드

DOI QR Code

Kinematics of the Northern Filament in Orion Molecular Clouds Complex Using 12CO Molecular Observation Data

12CO 분자선 관측 자료를 이용한 오리온 분자운 복합체내 북쪽 필라멘트의 운동학 연구

  • Jo, Hoon (Department of Earth Science Education, Korea National University of Education) ;
  • Sohn, Jungjoo (Department of Earth Science Education, Korea National University of Education) ;
  • Kim, ShinYoung (Korea Astronomy and Space Science Institute) ;
  • Lee, JeeWon (Korea Astronomy and Space Science Institute) ;
  • Kim, Sungsoo S. (Department of Astronomy & Space Science, Kyung Hee University) ;
  • Morris, Mark (Department of Physics & Astronomy, UCLA)
  • 조훈 (한국교원대학교 지구과학교육과) ;
  • 손정주 (한국교원대학교 지구과학교육과) ;
  • 김신영 (한국천문연구원) ;
  • 이지원 (한국천문연구원) ;
  • 김성수 (경희대학교 우주과학과) ;
  • Received : 2018.08.24
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

We investigated the effect of galactic plane toward molecular motion and kinematics in the northern filament (NF) of Orion Molecular Clouds Complex (OMC) using $^{12}CO$ (J=1-0) line. Observed data were from three areas including NF1, NF2, and NF3 in far-out order from galactic plane, for a total 270 hours by Seoul National University Radio Astronomy Observatory (SRAO) 6m telescope, with 2arcmin spatial resolution. galactic plane and OMC NF were connected to each other along the magnetic field at a density of 3% for $^{12}CO$ (J=2-1) and 9% for the case of dust. $^{12}CO$ (J=1-0), $^{12}CO$ (J=2-1), and interstellar dusts were distributed uniformly in NF3, but only in certain regions with relatively high density in NF1 and NF2. NF showed a single structure, partial shrinking motion in NF1, and rotational motion at the bottom of NF2, and spiral rotation associated with magnetic field only in NF3. The position-velocity analysis showed that the materials including $^{12}CO$ (J=1-0) could flow toward galactic plane along NF2 and NF3. However, there was no clear cause for the material to flow toward galactic plane in this result. Further detailed observation for rotational motion at the top of NF1 and NF2 might help to confirm it.

우리는 오리온 분자운 복합체의 북부 필라멘트(이하 NF)에 대하여 $^{12}CO$ (J=1-0) 분자선의 자료를 이용하여 은하 평면이 분자의 운동과 운동학에 미치는 영향을 연구하였다. 6 m 서울대학교 전파망원경(Seoul Radio Astronomy Observatory, SRAO)을 이용하여 2arcmin 공간분해능으로 은하면으로부터 먼 순서로 NF1, NF2, NF3 세 곳을 총 270시간 동안 관측된 자료를 사용하였다. 은하면과 OMC NF는 $^{12}CO$ (J=2-1) 경우 3% 밀도에서, 티끌의 경우 9% 밝기 수준에서 자기장을 따라 서로 연결되어 있었다. $^{12}CO$ (J=1-0), $^{12}CO$ (J=2-1), 성간 티끌 관측결과를 비교해본 결과, 세 경우 모두 NF3에서는 고루 분포했지만, NF1과 NF2에서는 비교적 밀도가 높은 특정 영역에서만 함께 나타났다. NF는 단일 구조를 보였으며, NF1에서는 부분 수축 운동을, NF2에서는 하단에서 회전 운동이 나타났고, NF3에서는 유일하게 명확히 자기장에 연관된 나선형 회전이 보였다. 위치-속도 분석 결과, $^{12}CO$ (J=1-0)를 비롯한 물질들은 NF2와 NF3을 따라 은하면을 향하여 흐를 가능성이 있음을 확인할 수 있었다. 은하면을 향하여 물질이 흐르는 명백한 원인을 이번 연구결과에서 볼 수 없었지만 추후의 더 정교한 관측결과가 NF1과 NF2 상단부의 회전 운동을 확인 할 수 있겠다.

Keywords

References

  1. Andre, P., Di Francesco, J., Ward-Thompson, D., Inutsuka, S.I., Pudritz, R.E., and Pineda, J.E., 2014, From filamentary networks to dense cores in molecular clouds: toward a new paradigm for star formation. In Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T. (eds.), Protostars and Planets VI. University of Arizona Press, Tucson, USA, 4, 27-51.
  2. Bally, J., Langer, W.D., Stark, A.A., and Wilson, R.W., 1987, Filamentary structure in the Orion molecular cloud. The Astrophysical Journal, 312, L45-L49. https://doi.org/10.1086/184817
  3. Cohen, M. and Kuhi, L.V., 1979, Observational studies of pre-main-sequence evolution. The Astrophysical Journal Supplement Series, 41, 743-843. https://doi.org/10.1086/190641
  4. ESA, 2016, France. POLARISED EMISSION FROM ORION. http://sci.esa.int/planck/55910-polarised-emissionfrom-orion/ (June 22th 2016)
  5. Goldreich, P. and Kwan, J., 1974, Molecular clouds. The Astrophysical Journal, 189, 441-454. https://doi.org/10.1086/152821
  6. Hanawa, T., Nakamura, F., Matsumoto, T., Nakano, T., Tatematsu, K.I., Umemoto, T., Kameya, O., Hirano, N., Hasegawa, T., Kaifu, N., and Yamamoto, S., 1993, Effects of magnetic fields and rotation on the fragmentation of filamentary molecular clouds-Comparison of the theory with the Orion A cloud. The Astrophysical Journal, 404(2), L83-L86. https://doi.org/10.1086/186749
  7. Herbig, G.H. and Kameswara Rao, N., 1972, Second catalog of emission-line stars of the Orion population. The Astrophysical Journal, 174, 401. https://doi.org/10.1086/151500
  8. Herbst, W., Holtzman, J.A., and Phelps, B.E., 1982, Optical monitoring of Orion population stars. I-Results for some T Tauri and Herbig Ae/be stars. The Astronomical Journal, 87, 1710-1729. https://doi.org/10.1086/113262
  9. Jeong, I.G., Koo, B.C., Cho, W.K., Kramer, C., Stutzki, J., and Byun, D.Y., 2013, CO J=1-0 and J=2-1 Line Observations of the Molecular-cloud-blocked Supernova Remnant 3C434. 1. The Astrophysical Journal, 770(2), 105. (in korean) https://doi.org/10.1088/0004-637X/770/2/105
  10. Kirk, H., Myers, P.C., Bourke, T.L., Gutermuth, R.A., Hedden, A., and Wilson, G.W., 2013, Filamentary accretion flows in the embedded Serpens South protocluster. The Astrophysical Journal, 766(2), 115. https://doi.org/10.1088/0004-637X/766/2/115
  11. Koo, B.C., Park, Y.S., Hong, S.S., Yun, H.S., Lee, S.G., Byun, D.Y., Byun, D.Y., Lee, J.W., Choi, H.K., Yoon, Y.Z., Kim, K.T., Kang, H.W., and Lee, J.E., 2003, Performance of the SRAO 6-meter Radio Telescope. Journal of Korean Astronomical Society, 285(36), 43-48. (in korean)
  12. Kutner, M.L., Tucker, K.D., Chin, G., and Thaddeus, P., 1977, The molecular complexes in Orion. The Astrophysical Journal, 215, 521-528. https://doi.org/10.1086/155384
  13. Lee, J.W., 2007, $^{12}CO$ and 13CO Observations toward the Two Extraordinary Filaments in the Orion-Monoceros Molecular Cloud Complex. Unpublished M.S. dissertation, Kyung Hee University, Seoul, Korea, 51 p.
  14. Lee, K., Looney, L.W., Schnee, S., and Li, Z.Y., 2013, Earliest stages of protocluster formation: substructure and kinematics of starless cores in orion. The Astrophysical Journal, 772(2), 100. https://doi.org/10.1088/0004-637X/772/2/100
  15. Li, D.L., Esimbek, J., Zhou, J.J., Lou, Y.Q., Wu, G., Tang, X.D., and He, Y.X., 2014, Filament L1482 in the California molecular cloud. Astronomy & Astrophysics, 567, A10. https://doi.org/10.1051/0004-6361/201323122
  16. Maddalena, R.J., Morris, M., Moscowitz, J., and Thaddeus, P., 1986, The large system of molecular clouds in Orion and Monoceros. The Astrophysical Journal, 303, 375-391. https://doi.org/10.1086/164083
  17. Mookerjea, B., Ghosh, S.K., Rengarajan, T.N., Tandon, S.N., and Verma, R.P., 2000, Distribution of Cold dust in Orion A and B. The Astronomical Journal, 120(4), 1954. https://doi.org/10.1086/301554
  18. Morris, M., Montani, J., and Thaddeus, P., 1980, Molecular clouds in Orion and Monoceros. In Symposium-International Astronomical Union, 87, 197-203.
  19. O'Dell, C.R., Muench, A., Smith, N., and Zapata, L., 2008, Star Formation in the Orion Nebula II: Gas, Dust, Proplyds and Outflows. In Reipurth, B. (ed.), Handbook of Star Forming Regions. Astronomical Society of the Pacific Monograph Publications, CA, USA, 1, 544-589.
  20. Oya, Y., Sakai, N., Lopez-Sepulcre, A., Watanabe, Y., Ceccarelli, C., Lefloch, B., and Yamamoto, S., 2016, Infalling-rotating motion and associated chemical change in the envelope of IRAS 16293-2422 Source A studied with ALMA. The Astrophysical Journal, 824(2), 88. https://doi.org/10.3847/0004-637X/824/2/88
  21. Palla, F. and Stahler, S.W., 1999, Star formation in the Orion nebula cluster. The Astrophysical Journal, 525(2), 772. https://doi.org/10.1086/307928
  22. Wilson, B.A., Dame, T.M., Masheder, M.R.W., and Thaddeus, P., 2005, A uniform CO survey of the molecular clouds in Orion and Monoceros. Astronomy & Astrophysics, 430(2), 523-539. https://doi.org/10.1051/0004-6361:20035943