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Abstract 
High-performance computing (HPC) provides to researchers a powerful ability to resolve problems with 
intensive computations, such as those in the math and medical fields. When an HPC platform is provided as a 
service, users may suffer from unexpected obstacles in developing and running applications due to restricted 
development environments and dependencies. In this context, operating system level virtualization can be a 
solution for HPC service to ensure lightweight virtualization and consistency in Dev-Ops environments. 
Therefore, this paper proposes three types of typical HPC structure for container environments built with 
HPC container and Docker. The three structures focus on smooth integration with existing HPC job 
framework, message passing interface (MPI). Lastly, the performance of the structures is analyzed with High 
Performance Linpack benchmark from the aspect of performance degradation in network communications 
under Docker. 
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1. Introduction 

High-performance computing (HPC) services have provided an infrastructure to run computationally 
intensive jobs in the science and math fields. As users request more complex and varied environments 
for running and developing HPC programs, HPC service provider is finding it hard to deal with their 
needs, such as installing specific libraries or HPC software [1]. Although users want to use the modules, 
some modules are hard to be installed due to possible conflicts with existing software or unexpected 
impacts on HPC infrastructure [2]. 

Virtualization can be a solution to meet specific requirements, so HPC users can build their own 
environments freely. However, hypervisor-based virtualization techniques, such as kernel-based virtual 
machine (KVM) or Xen, have been regarded as inappropriate because of performance loss in the 
process of virtualization. The HPC container is considered a good example that successfully achieves 
integration with HPC platforms in operating system (OS) level virtualization, bringing low performance 
overhead [3]. However, rich functionalities of Docker container, such as effective isolation and 
extensibility, can be necessary in order to manage an HPC platform more flexible. Therefore, we propose 
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three types of HPC structure using the HPC container and Docker, which enable container technology 
to integrate with message passing interface (MPI) framework. We also evaluate performance to validate 
the proposed structures by deploying a High-Performance Linpack (HPL) cluster in Singularity and 
Docker. As a result, we found that prevalent overlay networks in Docker, such as swarm mode and etcd 
overlay network, cause performance degradation from the aspect of network communications. 
Contributions of this paper are proposal for container-based HPC service structures considering 
integration of MPI framework, and the performance analysis for guidance on choosing a proper HPC 
structure. 

 

 

2. Background 

2.1 Message Passing Interface 
 

MPI is a standard that describes exchange of information in distributed and parallel processing. MPI 
defines an abstract interface to receive and send messages between MPI processes, and thus, programs 
that comply with MPI standard can be portable and compatible from one to the other [2]. Even though 
MPI processes can be launched independently by ‘mpiexec’ or ‘mpirun’ commands, most HPC services 
run MPI program indirectly using a resource manager and scheduler installed on HPC platform for 
batching and queueing jobs. In this procedure, MPI processes are managed by a process manager with a 
corresponding process management interface (PMI) to control and communicate with MPI processes. 
Since the separation of PMI and MPI allows MPI libraries to stay generic enough to be used with any 
PMI, integrating MPI and an HPC platform requires PMI support in a built-in or indirect way. 

 

2.2 Docker and HPC Containers 
 

Docker is container management engine that provides virtualized space by utilizing cgroup, 
namespace, and chroot. In contrast to a virtual machine, which virtualizes hardware and requires an 
intermediate supervisor on top of the host OS, Docker is much more lightweight and composable 
because of the virtualization principle of sharing a host kernel [4]. Docker container and images consist 
of layered file system, which facilitates fast distribution of Docker images by not transferring existing 
layers in a host. However, Docker mainly focuses not on HPC workflow, but on establishing   micro-
service architecture for containerized applications. Not only is MPI integration with Docker container 
not officially supported, but Docker is also not compatible with the existing HPC scheduler and 
resource manager [5,6]. 

The HPC container is designed to integrate existing HPC workflow into OS-level virtualization while 
aligning itself to MPI framework in a user-defined environment. There are two HPC containers that are 
generally adopted by many communities: Shifter [1] and Singularity [7]. Shifter enables HPC users at 
the National Energy Research Scientific Computing Center (NERSC) to run a Docker image efficiently 
by constructing their own additional component. Singularity also supports compatibility with HPC 
system and MPI framework, and mainly focuses on portability to run the HPC container, regardless of 
the Linux distribution and execution environment. 
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3. Related Works 

There has been a lot of research studying the introduction of OS-level virtualization into scientific 
and high-performance applications by utilizing Docker and HPC container, Shifter and Singularity 
container. Martin et al. [8] explored the feasibility of rkt container in a high-performance environment 
by conducting Graph500 and HPL benchmark tests, and they compared performance with commonly 
used container technologies, Docker and LXC (Linux container). Nguyen and Bein [9] implemented a 
ready-to-use solution to quickly deploy and use HPC environment for a distributed MPI program 
orchestrated with Docker swarm mode. Sparks [3] investigated the characteristics of the container 
ecosystem for an HPC workload and examined the execution time of container as well as numerical 
aerodynamic simulation (NAS) parallel benchmark of each container, rkt, Docker, Singularity, and 
runC. A lot of research into HPC proved that container technology can meet HPC requirements, by 
reason of low performance loss and feasibility, compared to traditional hypervisor-based virtualization. 

 
 

4. Proposal of HPC Platform Structure Based on Containers 

The goal of integrating containers into HPC environments is to avoid violating fundamental HPC 
systems such as the workload manager and MPI framework, while preserving the performance of native 
host. The HPC container is a natural way to maintain an existing HPC system because of its support for 
MPI framework interface. Although the HPC container accomplishes the eventual goals by complying 
with MPI interface and through compatibility with the HPC system, the functionalities of Docker 
represented by cgroup, layered file system, and network namespace are adapted as an alternative to the 
HPC container in order to meet various requirements of HPC service. 

In contrast to the HPC container, which provides an interface compatible with the HPC workload 
manager, such as Slurm and Sun Grid Engine (SGE), Docker is designed to construct a micro-service 
architecture for scalability in a cloud domain. On account of this, Docker container is required to 
compose different architecture to provide HPC service for users. In this context, we propose three types 
of HPC structures that integrate container and HPC system using an HPC container and Docker. The 
structures focus on achieving interoperability and compatibility between containers and MPI 
implementations. 

Fig. 1(a) represents integration of existing HPC workloads using an HPC container. The HPC 
container supports most of MPI library executions with HPC resource managers and scheduler. Each 
MPI process launched in an HPC container is managed by the HPC system in terms of process lifecycle 
and its communications. As the HPC container works in form of a plugin with additional commands or 
options like ‘--singularity-image’ and ‘shifter’, the fundamental HPC structure remains unchanged. The 
proposed model achieves successful integration with the HPC system for container; nevertheless, there 
are still limitations in flexibility and extensibility for some aspects due to a lack of features in the HPC 
container itself. Depending on the requirements of users and its purposes, Docker substitutes for the 
HPC container shown in Fig. 1(a) with changes to the overall architecture. 

The second and third structures were designed using approaches from the perspective of Docker. The 
second structure, which is shown in Fig. 1(b), shows characteristics similar to the structure in Fig. 1(a), 
because Docker container is regarded as a single MPI process or job. The difference is that workload 
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manager executes ‘mpirun’ or ‘mpiexec’ commands in each Docker container to launch parallel 
processes. In other words, the user executes MPI command in a common way, such as Bash shell, and it 
triggers utilizing a communications process, including Secure Shell Daemon in infrastructure as a 
service (IaaS) environments. In this way, job management is delegated to an externally implemented 
resource manager and scheduler, taking a straightforward structure for separation between container 
and HPC platform. However, because an HPC system that supports Docker container is not officially 
provided currently, it should be implemented independently by HPC service providers [10]. 

 

 
(a) 

 
(b)  (c) 

Fig. 1. HPC platform structure. (a) HPC container integration with existing HPC platform. (b) Docker 
case 1: container as MPI process of each job. (c) Docker case 2: container as HPC worker node. 

 

The last structure also uses Docker container, as shown in Fig. 1(c), but HPC resource manager and 
scheduler manage each container as a node. All HPC components exist in Docker container, and each 
container is regarded as a consumable resource, like a virtual machine (VM) or native host. Therefore, 
the HPC system is implemented inside Docker container in the same manner as an existing HPC 
platform. The HPC platform is packaged as a Docker image to be deployed to an HPC cluster, while 
externally installed HPC system files may be mounted into containers to ensure the independence of its 
components. The third proposed structure has advantages in flexibly scaling HPC nodes by creating or 
deleting containers quickly. If users request guaranteed integrity of their own environments, MPI 
process is formed as a container, which requires container-in-container technology, such as Docker-in-
Docker (dind) or Play-with-Docker (PWD). 
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5. Performance Evaluation 

According to the proposed structures, Fig. 1(a) is categorized as HPC container, and Fig. 1(b) and 
1(c) are categorized as Docker container. To examine the applicability of two container types to a 
practical HPC job from the performance aspect, an evaluation using Singularity and Docker was 
conducted. A benchmark cluster was deployed in both containers using HPL, which is one of the 
indicators used to rank Top500 supercomputers. HPL consists of distributed MPI processes to solve a 
random dense linear system in double-precision arithmetic. 

Performance evaluation results from using Singularity version 2.3.1 and Docker version 17.03.0-ce 
are shown in Fig. 2. The test was set up under two hosts with CentOS version 7.2.1511 installed and 
equipped with 16 GB memory; 16 Intel Xeon E5-2620 CPUs at 2.10 GHz applied hyperthreading, which 
is equal to 32 logical CPUs. The network setup was configured under a 10 Gb network switch and an 
internal IP address to maximize bandwidth. For Singularity, the ‘srun’ command was used to launch 
MPI processes to each container, and for Docker, ‘mpirun’ was used. In both cases, CPU affinity was set 
by MPICH version 3.2 and Slurm version 17.02.6 to prevent unexpected performance loss in CPU 
scheduling. HPL.dat configuration in HPL benchmark is properly optimized to drive the best 
performance within provided hardware specifications. 

 

 
Fig. 2. Performance test with HPL benchmark. 

 
An MPI process inside a Docker container needs a way to communicate with other containers located 

on different hosts, since each Docker container has Network Address Translation (NAT) IP address. 
The host network mode of Docker allows containers to have the same network configuration as the 
host, so containers in different hosts communicate by the hosts’ IP addresses. However, this way 
regards each host as a consumable resource, and does not assume running multiple containers in a host. 
Thus, this paper covers alternatives for intercommunication between containers, overlay network of 
swarm mode, and distributed coordinators, such as etcd, Calico, and Macvlan. 

In Singularity, performance is the same as native host because HPC containers do not utilize a 
network namespace, which is one of the reasons for performance degradation in network packet 
encapsulation. The Macvlan network of Docker also shows the same performance as native host. 
Macvlan allows the host machine to configure multiple L2 addresses on a single physical network 
interface, and it does not incur performance loss from a network aspect. However, Macvlan cannot be 



Chanho Yong, Ga-Won Lee, and Eui-Nam Huh 
 

 

J Inf Process Syst, Vol.14, No.6, pp.1398~1404, December 2018 | 1403 

used in a general environment because Macvlan for container communication between different hosts 
requires a specific network infrastructure such as network switch and router. 

Performance degradation under Calico, showing an approximate 1.3% GFlops loss, is negligible when 
compared to swarm mode and etcd overlay network. Swarm mode and etcd overlay network showed 
considerable performance degradation of up to 14.2%. Even though swarm mode and etcd overlay 
network have such a performance loss, both have an advantage in that an additional agent in the 
Docker daemon is not required. Docker swarm mode supports physical hosts to compose logical 
clusters for pooling distributed resources, and etcd improves the potential extensibility of an application 
by exposing key-value information in the form of a distributed coordinator. Therefore, in Docker, it is 
necessary to adopt a suitable network method considering the characteristics of HPC infrastructure and 
network features. 

 
 

6. Conclusion and Future Works 

HPC systems get benefits from OS-level virtualization in building an efficient HPC service and 
platform. In order to standardize HPC platform structure based on container, this paper proposed three 
integration types that consider HPC workload and MPI framework in HPC container and Docker. The 
performance was examined by deploying the HPL benchmark in Singularity and Docker. Experiment 
results showed that Singularity has no performance loss, but in Docker, performance degradation 
occurred in swarm mode and etcd overlay network. Consequently, this result indicates that flexibility 
and network functionalities are a trade-off with performance. 

In future works, provisioning HPC platform as a cloud service to provide on-demand scalability will 
be studied. Integrating cloud services with HPC services will enable HPC cloud users to deploy a high-
performance infrastructure as they want it. 
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