References
- WHO. Falls (2018). http://www.who.int/en/news-room/fact-sheets/detail/falls (accessed Aug., 27, 2018).
- Mao A.; Ma X.; He Y.; Luo J.; " Highly portable, Sensor-Based System for Human Fall Monitoring, Sensors," Sensors, 2017.
- He, J.; Bai, S.; Wang, X.; "An unobtrusive fall detection and alerting system based on Kalman filter and Bayes network classifier," Sensors, 2017.
- Putra, P.; Brusey, J.; Gaura, E.; Vesilo, R.; "An Event Triggered Machine Learning Approach for Accelerometer-Based Fall Detection," Sensors, 2018.
- Diep, N.; Pham, C.; Phuong, T.; "A classifier based approach to real-time fall detection using low-cost wearable sensors.," Proc. Of International Conference on Soft Computing and Pattern Recognition(SoCPaR), pp.105-110, 2013.
- Dinh, C.; Struck, M.; "A New Real-time Fall Detection Approach Using Fuzzy and neural network," Proc. Of International Conference on Wearable Micro and Nano Technologies for Personalized Health, pp.57-60, 2009.
- Putra, P.; Vesilo, R.; "Window-size impact on detection rate of wearable-sensor based fall detection using supervised machine learning.," Proc. Of IEEE Life Sciences Conference, pp.21-26, 2017.
- Li, Q.; Stankovic, J.; Hanson, M.; Barth, A.; Lach, J.; Zhou G.; "Accurate, Fast Fall Detection using Gyroscopes and Accelerometer Derived Posture Information," Body Sensor Network, International Workshop on Wearable and Implantable Body Sensor Networks, pp.138-143, 2009.
- Lindemann, U.; Hock, A.; Stuber, M.; Keck, W.; Becker, C.; "Evaluation of a Fall Detector Based on Accelerometers: A Pilot Study," Med. Biol. Eng. Coput., vol.43, pp.548-551, 2005. https://doi.org/10.1007/BF02351026
- Bagala, F.; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, J.; Zijlstra, W.; Klenk, J.; "Evaluation of Accelerometer-based Fall Detection Algorithms on Real-world Falls.," PLoS ONE, 2012.
- Ojetola, O.; Gaura, E.; Brusey, J.; "Fall Detection with Wearable Sensors-SAFE (SmArt Fall dEtection)," Proc. Of International Conference on Intelligent Environments(IE), pp.318-321, 2011.
- Tong L.; Song, Q.; Ge, Y.; Liu M.; "HMM-Based Human Fall Detection and Prediction Method Using Tri-Axial Accelerometer.," IEEE Sens. J., vol.13, pp.1249-1256 vol.1, 2013.
- Habib, M.A.; Mohktar, M.S.; Kamaruzzaman, S.B.; Lim, K.S.; Pin, T.M.; Ibrahim, F.; "Smartphone-Based Solutions for Fall Detection and Prevention: Challenges and Open Issues," Sensors, vol.14, pp.7181-7208, 2014. https://doi.org/10.3390/s140407181
- Tae Woong Kim, "Group Behavior Pattern and Activity Analysis System Using Big Data Based Acceleration Signals," Smart Media Journal, vol.6, no.3, pp.83-88, 2017.
- Younghun Lee, Yongil Kim, "Design of Building Biomertic Big Data System using the Mi Band and MongoDB," Smart Media Journal, vol.5, no.4, pp.124-130, 2016.
- Kangas, M.; Vikman, I.; Wiklander, J.; Lindgren, P.; Nyberg, L.; Jamsa, T.; Sensitivity and Specificity of Fall Detection in People Aged 40 Years and Over.," Gait Posture, vol.29, no.4, pp. 571-574, 2009. https://doi.org/10.1016/j.gaitpost.2008.12.008
- Ojetola, O.; Gaura, E.; Brusey, J.; "Data Set for Fall Events and Daily Activities from Inertial Sensors.," Proc. Of ACM Multimedia Systems Conference, pp.243-248, 2015.
- Pedregosa, F.; Varaquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Douborg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E.; "Scikit-learn: Machine Learning in Python.," Journal of Machine Learning Research, vol.12, pp. 2825-2830, 2011.
- Gjoreski, M.; Lustrek, M.; Gams, M.; "Accelerometer Placement for Posture Recognition and Fall Detection.," Proc. Of International Conference on Intelligent Environment(IE), pp.47-54, 2011.