DOI QR코드

DOI QR Code

Artificial Intelligence (AI)-based Deep Excavation Designed Program

  • Yoo, Chungsik (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus) ;
  • Aizaz, Haider Syed (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus) ;
  • Abbas, Qaisar (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus) ;
  • Yang, Jaewon (School of Civil and Environmental Engineering, Sungkyunkwan Univ. Natural Sciences Campus)
  • 투고 : 2018.11.21
  • 심사 : 2018.12.20
  • 발행 : 2018.12.30

초록

This paper presents the development and implementation of an artificial intelligence (AI)-based deep excavation induced wall and ground displacements and wall support member forces prediction program (ANN-EXCAV). The program has been developed in a C# environment by using the well-known AI technique artificial neural network (ANN). Program used ANN to predict the induced displacement, groundwater drawdown and wall and support member forces parameters for deep excavation project and run the stability check by comparing predict values to the calculated allowable values. Generalised ANNs were trained to predict the said parameters through databases generated by numerical analysis for cases that represented real field conditions. A practical example to run the ANN-EXCAV is illustrated in this paper. Results indicate that the program efficiently performed the calculations with a considerable accuracy, so it can be handy and robust tool for preliminary design of wall and support members for deep excavation project.

키워드

HKTHB3_2018_v17n4_277_f0001.png 이미지

Fig. 1. ANN implementation steps

HKTHB3_2018_v17n4_277_f0002.png 이미지

Fig. 2. Program general overview

HKTHB3_2018_v17n4_277_f0003.png 이미지

Fig. 3. Input module layout

HKTHB3_2018_v17n4_277_f0004.png 이미지

Fig. 4. General structure of ANN

HKTHB3_2018_v17n4_277_f0005.png 이미지

Fig. 5. Displacement sub module

HKTHB3_2018_v17n4_277_f0006.png 이미지

Fig. 6. Displacement sub module

HKTHB3_2018_v17n4_277_f0007.png 이미지

Fig. 7. Wall and support sub module

HKTHB3_2018_v17n4_277_f0008.png 이미지

Fig. 8. Excavation case description

HKTHB3_2018_v17n4_277_f0009.png 이미지

Fig. 9. CIP wall parameter description

HKTHB3_2018_v17n4_277_f0010.png 이미지

Fig. 10. SCW parameter description

HKTHB3_2018_v17n4_277_f0011.png 이미지

Fig. 11. Groundwater submodule results comparison with SeepW

HKTHB3_2018_v17n4_277_f0012.png 이미지

Fig. 12. Displacement submodule results comparison with Plaxis

HKTHB3_2018_v17n4_277_f0013.png 이미지

Fig. 13. Wall and support submodule results comparison with GeoXD

Table 1. General input used in ANNs training

HKTHB3_2018_v17n4_277_t0001.png 이미지

Table 2. General ground material properties

HKTHB3_2018_v17n4_277_t0002.png 이미지

Table 3. Data ranges wall and ground displacement and wall and support member forces DBs

HKTHB3_2018_v17n4_277_t0003.png 이미지

Table 4. Data ranges ground water drawdown DB

HKTHB3_2018_v17n4_277_t0004.png 이미지

Table 5. Data ranges ground water drawdown DB

HKTHB3_2018_v17n4_277_t0005.png 이미지

Table 6. Ground and support input parameters

HKTHB3_2018_v17n4_277_t0006.png 이미지

Table 7. Strut parameters

HKTHB3_2018_v17n4_277_t0007.png 이미지

Table 8. H-Pile wall parameters

HKTHB3_2018_v17n4_277_t0008.png 이미지

Table 9. CIP wall parameters

HKTHB3_2018_v17n4_277_t0009.png 이미지

Table 10. SCW parameters

HKTHB3_2018_v17n4_277_t0010.png 이미지

Table 11. Validation results for groundwater submodule

HKTHB3_2018_v17n4_277_t0011.png 이미지

Table 12. Validation results for displacement submodule

HKTHB3_2018_v17n4_277_t0012.png 이미지

Table 13. Validation results for wall and support submodule

HKTHB3_2018_v17n4_277_t0013.png 이미지

Table 14. Stability check results for CIP and H-Pile Walls

HKTHB3_2018_v17n4_277_t0014.png 이미지

Table 15. Stability check results for SCW

HKTHB3_2018_v17n4_277_t0015.png 이미지

참고문헌

  1. Acharyya, R., Dey, A. and Kumar, B. (2018), "Finite element and ANN-based prediction of bearing capacity of square footing resting on the crest of $c-{\varphi}$ soil slope", International Journal of Geotechnical Engineering, 1-12.
  2. Chan, W., Chow, Y. and Liu, L. (1995), "Neural network : An alternative to pile driving formulas", Computer and Geotechnics, 17, 135-156. https://doi.org/10.1016/0266-352X(95)93866-H
  3. Farrokhzad, F., Barari, A., Ibsen, L. and Choobbasti, A. (2011), "Predicting subsurface soil layering and landslide risk with Artificial Neural Networks: a case study from Iran". GEOLOGICA CARPATHICA, 62(5), 477-485. https://doi.org/10.2478/v10096-011-0034-7
  4. Khatami, S., Mirhabibi, A., Khosravi, A. and Nahavandi, S. (2001), "Artificial Neural Network Applications in Geotechnical Engineering". Australian Geomechanics, 49-62.
  5. Kim, C., Bae, G., Hong, S., Park, C., Moon, H. and Shin, H. (2001), "Neural network based prediction of ground surface settlements due to tunnelling", Computers and Geotechnics, 28, 517-547. https://doi.org/10.1016/S0266-352X(01)00011-8
  6. Kung, G., Hsiao, E., Schuster, M., and Juang, C. (2007), "A neural network approach to estimating deflection of diaphragm walls caused by excavation in clays", Computers and Geotechnics, 34, 385-396. https://doi.org/10.1016/j.compgeo.2007.05.007
  7. Rastbood, A., Majdi, A. and Gholipur, Y. (2017), "Prediction of structural forces of segmental tunnel lining using FEM based artificial neural network", International Journal of Mining and Geo-Engineering, 1(51), 71-78.
  8. Shahin, M., Jaksa, M. and Maier, H. (2001), "Artificial neural network applications in geotechnical engineering", Australian Geomechanics, 49-62.
  9. Yoo, C. and Kim, J. (2007), "Tunneling performance prediction using an integrated GIS and neural network". Computers and Geotechnics, 34, 19-30. https://doi.org/10.1016/j.compgeo.2006.08.007
  10. Yoo, C., Jeon, Y. and Choi, B. (2006), "IT-based tunnelling risk management system (IT-TURISK) - Development and implementation". Tunnelling and Underground Space Technology, 21, 190-202. https://doi.org/10.1016/j.tust.2005.05.002
  11. Yoo, C., You, K. and Park, I. (2010), "Development and implementation of knowledge-based underground excavation design system", Internation journal of Geo-Engineering, 2(1), 21-27.

피인용 문헌

  1. Development of AI-based Prediction and Assessment Program for Tunnelling Impact vol.18, pp.4, 2018, https://doi.org/10.12814/jkgss.2019.18.4.039