Fig. 2. Flow chart of Artificial Neural Network (ANN)
Fig. 1. Organization chart of Artificial Neural Network (ANN)
Fig. 3. Cross section of excavation condition
Fig. 4. Excavation construction steps
Fig. 5. Excavation construction modelling using Abaqus 2018
Fig. 6. Excavation construction modelling using MIDAS IT GeoXD
Fig. 7. Process of Artificial Neural Network (ANN) result prediction
Fig. 8. Validation for R2 of ground movement ANN
Fig. 9. RSE for ground movement ANN
Fig. 10. RI for ground movement ANN
Fig. 11. Validation for R2 of structural member force ANN
Fig. 12. RSE for structural member force ANN
Fig. 13. RI for structural member force ANN
Table 1. Input parameters and output parameters
Table 2. Ground conditions
Table 3. Range of input parameters
Table 4. Maximum and Minimum values of ground movement database
Table 5. Validation of ground movement ANN
Table 6. Maximum and Minimum values of structural member forces database
Table 7. Validation of structural member forces ANN
Table 8. Validation sets
Table 9. Validation result
참고문헌
- ABAQUS user's manual, Version 6.17. (2017). Hibbitt, Karlsson, and Sorensen, Inc., Pawtucket, Providence, R.I.
- Bae, G.J., Shin, H.S., Kim, D.G., Chang, S.H., Lim, J.J., Lee, G.P., Choi, S.W., KICT (2005), "Development of technologies for minimizing and preventing the disaster on tunnel construction 2", KICT, pp.73-87.
- Beale, M. H., Hagan, M. T. and Demuth, H. B. (2013), "Neural Network Toolbox User's Guide", Mathwork Inc.
- Jiao, Y. and Hudson, J. A. (1995), "The fully-coupled model for rock engineering system", Rock Mechanics and Mining Sciences & Geomechanics, Vol.32, Issue 5, pp.491-512. https://doi.org/10.1016/0148-9062(95)00038-I
- Kim, C. Y., Bae, G. J., Hong, S. W., Park, C. H., Moon, H. K. and Shin, H. S. (2001), "Neural network based prediction of ground surface settlements due to tunneling", Computers and Geotechnics, Vol.28, pp.517-547. https://doi.org/10.1016/S0266-352X(01)00011-8
- Matlab user manual version R2017 (2017), MathWorks, Inc.
- MIDAS (2010). "MIDAS GEOXD user's manual." MIDAS Information Technology Co.
- Woo S. J., Chung E. M. and Yoo C. S. (2016) "Development of optimized TBM segmental lining desing system", Journal of Korean Tunnelling and Underground Space Association, Vol.18, Issue 1, pp.13-30. https://doi.org/10.9711/KTAJ.2016.18.1.013
- Yang, Y. and Zhang, Q. (1997), "A hierarchical analysis for rock engineering using artificial neural networks", Rock Mechanics and Rock Engineering, Vol.30, Issue 4, pp.207-222. https://doi.org/10.1007/BF01045717
- Yang, Y. and Zhang, Q. (1998), "The application of neural networks to rock engineering system (RES)", Rock Mechanics and Mining Sciences, Vol.35, Issue 6, pp.727-745. https://doi.org/10.1016/S0148-9062(97)00339-2
- Yoo C. S. and Choi B. S. (2004) "Prediction of deep excavation induced ground surface movements using artificial neural network", Journal of Korean geotechnical society, Vol. 20, Issue 3, pp.53-65.
- Yoo C. S., Kim S. B., Joseph B. and Han D. H. (2006) "ANN-based prediction on tunnel behavior", Conference on Korean geotechnical society, Vol.10, pp.777.
- Yoo, C. S., Kim, S. B. and Yoo, K. H. (2008), "Development of IT-based tunnel design system", Journal of Korean Tunnelling and Underground Space Association, Vol.10, No.2, pp.153-166.