DOI QR코드

DOI QR Code

심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method

  • 투고 : 2018.07.26
  • 심사 : 2018.11.13
  • 발행 : 2018.12.30

초록

본 연구에서는 안정성과 위험도 평가의 중요성이 증대되고 있는 DCM(Deep Cement Mixing, 이하 DCM) 보강 지반상의 항만 구조물에 대하여 위험도 평가를 위한 파괴확률을 산정하였다. DCM 개량 지반의 위험도에 영향을 미치는 확률변수로 개량체의 설계기준강도와 시공중첩, 원지반의 강도 및 내부마찰각, 개량지반의 단위중량을 선정하고 관련 통계치를 산정하여 적용하였다. 또한, 상시 조건과 지진시 조건에서의 전체 시스템에 대한 파괴확률을 분석하였다. 본 연구를 통해 DCM 개량지반의 위험도 평가를 위한 확률변수에서 변동계수가 가장 큰 것은 설계기준강도이나 안전율의 변동성 즉, 시스템의 위험도에는 큰 영향을 미치지는 않는 것을 알 수 있었다. DCM 보강 지반에 대한 시스템의 파괴확률 영향인자 즉, 주된 위험요소는 상시 및 지진시 모두 외적안정의 경우 수평활동, 내적안정의 경우 압축파괴인 것으로 평가되었다. 또한, 수평활동에 대해서는 상시 파괴확률이 지진시 파괴확률보다 높고 압축파괴에 대해서는 상시 파괴확률이 지진시 파괴확률보다 낮은 것으로 나타났다. 전체 시스템의 상시 파괴확률과 지진시 파괴확률은 유사하지만, 본 사례의 경우 지진시 위험도가 다소 높은 것으로 나타났다.

In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

키워드

HKTHB3_2018_v17n4_53_f0001.png 이미지

Fig. 1. Risk factors of DCM reinforce system

HKTHB3_2018_v17n4_53_f0002.png 이미지

Fig. 2. Probabilistic risk assessment of DCM system

HKTHB3_2018_v17n4_53_f0003.png 이미지

Fig. 3. Cross section of DCM system

HKTHB3_2018_v17n4_53_f0004.png 이미지

Fig. 4. COV of DCM pile

HKTHB3_2018_v17n4_53_f0005.png 이미지

Fig. 5. External stability of DCM system on ordinary condition

HKTHB3_2018_v17n4_53_f0006.png 이미지

Fig. 6. Internal stability of DCM system on ordinary condition

HKTHB3_2018_v17n4_53_f0007.png 이미지

Fig. 7. Probability distribution of DCM system on ordinary condition

HKTHB3_2018_v17n4_53_f0009.png 이미지

Fig. 8. External stability of DCM system on earthquake condition

HKTHB3_2018_v17n4_53_f0010.png 이미지

Fig. 9. Internal stability of DCM system on earthquake condition

HKTHB3_2018_v17n4_53_f0011.png 이미지

Fig. 10. Probability distribution of DCM system on earthquake condition

Table 1. Analysis method of system reliability

HKTHB3_2018_v17n4_53_t0001.png 이미지

Table 2. Target reliability index and probability of failure

HKTHB3_2018_v17n4_53_t0002.png 이미지

Table 3. Stability evaluation method

HKTHB3_2018_v17n4_53_t0003.png 이미지

Table 4. Random variables for DCM system

HKTHB3_2018_v17n4_53_t0004.png 이미지

Table 5. Probabilistic risk assessment result of DCM overall system on ordinary condition

HKTHB3_2018_v17n4_53_t0005.png 이미지

Table 6. Probabilistic risk assessment result of DCM overall system on earthquake condition

HKTHB3_2018_v17n4_53_t0006.png 이미지

참고문헌

  1. Becker, D. E. (1996), "Eighteenth Canadian Geotechnical Colloquium: Limit State Design for Foundations, Part II, Development for the National Building Code of Canada", Canadian Geotechnical Journal, Vol.33, No.6, pp.984-1007. https://doi.org/10.1139/t96-125
  2. Hyundai E&C (2013), Probabilistic Stability Evaluation for DCM improved ground on Incheon International Port and Harbor Structures.
  3. Kim, B. J. (2004), "Assessment of Partial Safety Factors for Limit States Design of Foundations", Journal of The Korean Geotechnical Society, Vol.20, No.9, pp.77-89.
  4. Kim, C. D., Kim, B. I., Kim, S. I. and Lee, J. H. (2008), "Reliability-Based Design of Shallow Foundations Considering The Probability Distribution Types of Random Variables", Journal of The Korean Geotechnical Society, Vol.24, No.1, pp.1-12.
  5. Kitazume, M. and Terashi, M. (2013), The Deep Mixing Method, CRC Press.
  6. K-water (2009), National Technical Strategy Plan for Performance Improvement and Safety Management of Water Structures.
  7. Ministry of Land, Transport and Maritime Affairs, MOLIT (2011), Reliability-based Design Method for Quay Wall (Final draft).
  8. Ministry of Oceans and Fisheries, MOF (2015), Port and Harbor Design Code.
  9. Park, J. M. (2012), "Analysis of LRFD resistance factors for internal stability of deep mixing improved ground", Dongguk University Ph.D Thesis.
  10. Phoon, K., Kulhawy, F. and Grigoriu, M. (1995), "Reliability-Based Design of Foundations for Transmission Line Structures", Electrical Power Research Institute (EPRI), Report TR-105000.
  11. Whitman, R. V. (1984), "Evaluating calculated risk in geotechnical engineering", Journal of Geotechnical Engineering, ASCE, 110(2), pp.145-188.
  12. Wolff, T. F. (1994). "Evaluating the Reliability of Existing Levees", prepared for U.S. Army Engineer Waterways Experiment Station, Geotechnical Laboratory, Vicksburg.