DOI QR코드

DOI QR Code

인산을 이용한 법랑 코팅의 초윤활성 및 초기 시간에 대한 연구

Study on the Superlubricity and Running-in Period of Vitreous Enamel Coating using Phosphoric Acid

  • 한도렬 (연세대학교 대학원 기계공학과, 무한내마모연구단) ;
  • 김태형 (연세대학교 대학원 기계공학과, 무한내마모연구단) ;
  • 김대은 (연세대학교 대학원 기계공학과, 무한내마모연구단)
  • Han, Do-Lyeol (Center for Nano-Wear, Graduate School, Dept. of Mechanical Engineering, Yonsei University) ;
  • Kim, Tae-Hyung (Center for Nano-Wear, Graduate School, Dept. of Mechanical Engineering, Yonsei University) ;
  • Kim, Dae-Eun (Center for Nano-Wear, Graduate School, Dept. of Mechanical Engineering, Yonsei University)
  • 투고 : 2018.09.15
  • 심사 : 2018.11.21
  • 발행 : 2018.12.31

초록

Superlubricity refers to the lubrication phenomenon that occurs when the friction coefficient is lower than 0.01. In recent years, this phenomenon has received a significant amount of attention because it can greatly contribute to the reduction of economic and environmental losses caused by friction and wear. In the case of acid lubricants, only ceramic materials can be used for superlubricity, and it takes a long running-in period to enter the superlubricity regime. In this work, we investigated the superlubricity effect of vitreous enamel coating on SUS304. We also examined the running-in period of vitreous enamel coating under phosphoric acid lubricant condition with respect to surface treatments. Drying and polishing methods were used to treat the vitreous enamel coating on the specimen. The friction experimental results revealed that superlubricity could be achieved with vitreous enamel coating. It was also found that the drying and polishing methods can significantly reduce the running-in period and improve the wear properties of vitreous enamel coating. In particular, the polishing method shortened the running-in period by approximately 99% and reduced the wear rate by approximately 99%, compared to nontreated vitreous enamel coating.

키워드

OHHHB9_2018_v34n6_235_f0001.png 이미지

Fig. 1. Manufacturing process of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0001.png 이미지

Fig. 1. Manufacturing process of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0002.png 이미지

Fig. 2. Process of dry method.

OHHHB9_2018_v34n6_235_f0002.png 이미지

Fig. 2. Process of dry method.

OHHHB9_2018_v34n6_235_f0003.png 이미지

Fig. 3. Process of polishing method.

OHHHB9_2018_v34n6_235_f0003.png 이미지

Fig. 3. Process of polishing method.

OHHHB9_2018_v34n6_235_f0004.png 이미지

Fig. 4. Ball-on-disc type tribotester.

OHHHB9_2018_v34n6_235_f0004.png 이미지

Fig. 4. Ball-on-disc type tribotester.

OHHHB9_2018_v34n6_235_f0005.png 이미지

Fig. 5. Superlubricity of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0005.png 이미지

Fig. 5. Superlubricity of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0006.png 이미지

Fig. 6. Running-in period of dry and polishing method.

OHHHB9_2018_v34n6_235_f0006.png 이미지

Fig. 6. Running-in period of dry and polishing method.

OHHHB9_2018_v34n6_235_f0007.png 이미지

Fig. 7. Wear rate of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0007.png 이미지

Fig. 7. Wear rate of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0008.png 이미지

Fig. 8. Wear track of vitreous enamel coating.

OHHHB9_2018_v34n6_235_f0008.png 이미지

Fig. 8. Wear track of vitreous enamel coating.

Table 1. Friction experiment condition

OHHHB9_2018_v34n6_235_t0001.png 이미지

Table 1. Friction experiment condition

OHHHB9_2018_v34n6_235_t0001.png 이미지

참고문헌

  1. Perry, S. S., Tysoe, W. T., "Frontiers of fundamental tribological research", Tribol. Lett., Vol. 19, No. 3, pp. 151-161, 2005. https://doi.org/10.1007/s11249-005-6142-8
  2. Yeo, C. D., Kim, D. E., "Wear reduction of tappet surface by undulated surface", Tribol. Lubr., Vol. 14, No. 2, pp. 63-74, 1998. https://doi.org/10.9725/KSTLE.1998.14.2.063
  3. Wang, D. Y., Yoo, S. S., Kim, S. S., Kim, D. E., "Effect of water content on tribological characteristics of grease", Korean Soc. Precis. Eng., Vol. 33, No. 1, pp. 37-43, 2016. https://doi.org/10.7736/KSPE.2016.33.1.37
  4. Won, S. J., Cho, S. H., Kang, D. K., Heo, J. S., "Experimental strudy on wear characteristics of metallic materials used in oil sands plants", Tribol. Lubr., Vol. 33, No. 1, pp. 31-35, 2017. https://doi.org/10.9725/KSTLE.2017.33.1.31
  5. Wang, H., Liu, Y., Li, J., Luo, J., "Investigation of superlubricity achieved by polyalkylene glycol aqueous solutions", Adv. Mater. Interfaces., doi:10.1002/admi.201600531, 2016.
  6. Hirano, M., Shinjo, K., "Atomistic locking and friction", Phys. Rev. B., doi:10.1103/PhyRevB.41.11837, 1990.
  7. Deng, M., Zhang, C., Li, J., Ma, L., Luo, J., "Hydrodynamic effect on the superlubricity of phosphoric acid between ceramic and sapphire", Friction, Vol. 2, No. 2, pp. 173-181, 2014. https://doi.org/10.1007/s40544-014-0053-3
  8. Martin, J. M., "Superlubricity of molybdenum disulfide", Superlubricity, Chap. 13, pp. 207-225, University Institute of France, Paris, France, 2007. (ISBN 978-0-444-52772-1)
  9. Heimberg, J. A., Wahl, K. J., Singer, I. L., Erdemir, A., "Superlow friction behavior of diamond-like carbon coatings: Time and speed effects", Appl. Phys. Lett., doi:10.1063/1.1366649, 2001.
  10. Khurshudov, A., Kato, K., Sawada, D., "Tribological and mechanical properties of carbon nitride thin coating prepared by ion-beam-assisted deposition", Tribol. Lett., Vol. 2, No. 1, pp. 13-21, 1996. https://doi.org/10.1007/BF00182544
  11. Chen, M., Kato, K., Adachi, K., "Friction and wear of self-mated SiC and $Si_3N_4$ sliding in water", Wear, doi:10.1016/s0043-1648(01)00648-2, 2001.
  12. Chen, M., Briscoe, W. H., Armes, S. P., Klein, J., "Lubrication at physiological pressures by polyzwitterionic brushes", Science, Vol. 323, No. 5922, pp. 1698-1701, 2009. https://doi.org/10.1126/science.1169399
  13. Li, J., Liu, Y., Luo, J., Liu, P., Zhang, C., "Excellent lubricating behavior of Brasenia schreberi mucilage", Langmuir, Vol. 28, No. 20, pp. 7797-7802, 2012. https://doi.org/10.1021/la300957v
  14. Li, J., Zhang, C., Deng, M., Luo, J., "Investigations of the superlubricity of sapphire against ruby under phosphoric acid lubrication", Friction, Vol. 2, No. 2, pp. 164-172, 2014. https://doi.org/10.1007/s40544-014-0050-6
  15. Gao, Y., Ma, L., Luo, J., "Pitted surfaces produced by lactic acid lubrication and their effect on ultra-low friction", Tribol. Lett., doi:10.1007/s11249-015-0463-z, 2015.
  16. Blau, P. J., "On the nature of running-in", Tribol. Int., doi:10.1016/j.triboint.2005.07.020, 2005.
  17. Li, J., Zhang, C., Sun, L., Lu, X., Luo, J., "Tribochemistry and superlubricity induced by hydrogen ions", Langmuir, Vol. 28, No. 45, pp. 15816-15823, 2012. https://doi.org/10.1021/la303897x
  18. Byon, S. M., "Experimental study to examine wear characteristics and determine the wear coefficient of ductile cast iron (DCI) roll", Tribol. Lubr., Vol. 33, No. 3, pp. 98-105, 2017. https://doi.org/10.9725/KSTLE.2017.33.3.98

피인용 문헌

  1. 마모 입자가 음향방출신호에 미치는 영향에 관한 연구 vol.35, pp.5, 2018, https://doi.org/10.9725/kts.2019.35.5.317
  2. 경계윤활에서 기계 부품 소재의 트라이볼로지적 특성에 관한 연구 vol.35, pp.6, 2019, https://doi.org/10.9725/kts.2019.35.6.356