DOI QR코드

DOI QR Code

Corrosion Damage Characteristics with Materials and Process Time in Ultrasonic-Chemical Decontamination of Immersion Type

침적식 초음파-화학 제염 시 재료 및 공정 시간에 따른 부식 손상 특성

  • Lee, Seung-Jun (Department of Power System Engineering, Kunsan National University) ;
  • Hyun, Koangyong (Division of Naval Officer Science, Mokpo National Maritime University) ;
  • Han, Min-Su (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Kim, Seong-Jong (Division of Marine Engineering, Mokpo National Maritime University)
  • 이승준 (군산대학교 해양과학대학 마린엔지니어링전공) ;
  • 현광룡 (목포해양대학교 해군사관학부) ;
  • 한민수 (목포해양대학교 기관시스템공학부) ;
  • 김성종 (목포해양대학교 기관시스템공학부)
  • Received : 2018.08.28
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

In this study, we carried out an ultrasonic-chemical decontamination process with immersion type, reproduced in the laboratory. The corrosion damage characteristics, depending on kind of materials and ultrasonic process time, were investigated. Inconel 600, which showed lower corrosion potential and higher corrosion current density than that of STS 316, revealed severer corrosion damage and higher weight-loss rate than STS 316. Weight-loss rate of Inconel 600 increased with increasing ultrasonic process time. On the other hands, STS 316 presented a negligibly small corrosion damage, which was almost indistinguishable from visual observation. There was no effect of ultrasonic process time on the weight-loss rate of STS 316.

Keywords

PMGHBJ_2018_v51n5_291_f0001.png 이미지

Fig. 1 Photographs of weight-loss specimens for STS 316 and Inconel 600 after ultrasonic-chemical decontamination process.

PMGHBJ_2018_v51n5_291_f0002.png 이미지

Fig. 2 Surface morphology of STS 316 after ultrasonic-chemical decontamination process.

PMGHBJ_2018_v51n5_291_f0003.png 이미지

Fig. 3 Surface morphology of Inconel 600 after ultrasonic-chemical decontamination process.

PMGHBJ_2018_v51n5_291_f0004.png 이미지

Fig. 4 Weight-loss rate of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process.

PMGHBJ_2018_v51n5_291_f0005.png 이미지

Fig. 5 Tafel analysis of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process.

PMGHBJ_2018_v51n5_291_f0006.png 이미지

Fig. 6 Comparison of weight-loss rate of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process with ultrasonic process time.

PMGHBJ_2018_v51n5_291_f0007.png 이미지

Fig. 7 Mean weight-loss rate for total process cycle of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process with ultrasonic process time.

Table 1. Chemical composition of STS 316 and Inconel 600.(wt%)

PMGHBJ_2018_v51n5_291_t0001.png 이미지

Table 2. Process model on ultrasonic-chemical decomposition.

PMGHBJ_2018_v51n5_291_t0002.png 이미지

References

  1. W. K. Kratzer, Decontamination and decommissioning of nuclear facilities, ed. M. M. Osterhout, Plenum Press, New York (1980) 107-115.
  2. G. R. Choppin, Literature review of dilute chemical decontamination processes for water-cooled nuclear reactors, Palo Alto, CA, EPRI NP-1033, Electric Power Research Institute (1979).
  3. J. S. Song, M. Y. Jung, S.H. Lee, A study on the applicability for primary system decontamination through analysis on NPP decommission technology and international experience, JNFCWT, 14 (2016) 45-55.
  4. C. H. Jung, S. Y. Park, B. G. Ahn, B. J. Lee, W. Z. Oh, Decontamination of radioactive corrosion products by KAERI decontamination process, J. of Korea Inst. of Resources Recycling, 9 (1999) 20-29.
  5. E. Baumgartner, M. A. Blesa, H. Marinovich, A. J. G. Maroto, Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions, Inorg. Chem., 22 (1983) 2224-2226. https://doi.org/10.1021/ic00158a002
  6. A. Cruickshank, Developing techniques for decontamination, Nucl. Eng. Int., 28 (1983) 41-44.
  7. C. H. Jung, S. Y. Park, B. G. Ahn, B. J. Lee, W. Z. Oh, Decontamination of radioactive corrosion products by KAERI decontamination process, J. of Korean Inst. of Resources Recycling, 8 (1999) 20-29.
  8. S. J. Kim, M. S. Han, J. I. Kim, K. J. Kim, Development of chemical decontamination process of stainless steel for reactor coolant pump, J. Kor. Inst. Sur. Eng., 40 (2007) 234-240. https://doi.org/10.5695/JKISE.2007.40.5.234
  9. S. J. Kim, J. I. Kim, K. J. Kim, Development of chemical decontamination process of stainless steel for reactor coolant pump (II), J. Kor. Inst. Surf. Eng., 40 (2007) 271-278. https://doi.org/10.5695/JKISE.2007.40.6.271
  10. C. J. Wood, C. N. Spalaris, Source book for chemical decontamination of nuclear power plants, Electric Power Research Inst., EPRI-NP-6433, Washington (1989) 118.
  11. S. J. Kim, M. S. Han, J. I. Kim, K. J. Kim, Development of chemical decontamination process of stainless steel for reactor coolant pump, J. Kor. Inst. Sur. Eng., 40 (2007) 234-240. https://doi.org/10.5695/JKISE.2007.40.5.234
  12. E. B. Borghi, S. P. Ali, P. J. Morando, M. A. Blesa, Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids, J. Nucl. Mater., 229 (1996) 115-123. https://doi.org/10.1016/0022-3115(95)00201-4
  13. J. Y. Jung, S. Y. Park, H. J. Won, S. B. kim, W. K. Choi, J. K. Moon, S. J. Park, Corrosion properties of Inconel-600 and 304 stainless steel in new oxidative and reductive decontamination reagent, Met. Mater. Int., 21 (2015) 678-685. https://doi.org/10.1007/s12540-015-4572-x
  14. N. D. Tomashov, Development of the electrochemical theory of metallic corrosion, Corrosion, 20 (1964) 7t-14t. https://doi.org/10.5006/0010-9312-20.1.7t
  15. L. L. Shreir, Corrosion: metal/environment reactions, newness-butterworths, Boston (1976) 3.
  16. J. J. Echenrod, C. W. kovach, Properties of austenitic stainless steels and their weld metals(Influence of Slight Chemistry Variations), American society for testing and materials, Philadelpphia (1979) 17.