Fig. 1 Photographs of weight-loss specimens for STS 316 and Inconel 600 after ultrasonic-chemical decontamination process.
Fig. 2 Surface morphology of STS 316 after ultrasonic-chemical decontamination process.
Fig. 3 Surface morphology of Inconel 600 after ultrasonic-chemical decontamination process.
Fig. 4 Weight-loss rate of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process.
Fig. 5 Tafel analysis of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process.
Fig. 6 Comparison of weight-loss rate of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process with ultrasonic process time.
Fig. 7 Mean weight-loss rate for total process cycle of STS 316 and Inconel 600 after ultrasonic-chemical decontamination process with ultrasonic process time.
Table 1. Chemical composition of STS 316 and Inconel 600.(wt%)
Table 2. Process model on ultrasonic-chemical decomposition.
References
- W. K. Kratzer, Decontamination and decommissioning of nuclear facilities, ed. M. M. Osterhout, Plenum Press, New York (1980) 107-115.
- G. R. Choppin, Literature review of dilute chemical decontamination processes for water-cooled nuclear reactors, Palo Alto, CA, EPRI NP-1033, Electric Power Research Institute (1979).
- J. S. Song, M. Y. Jung, S.H. Lee, A study on the applicability for primary system decontamination through analysis on NPP decommission technology and international experience, JNFCWT, 14 (2016) 45-55.
- C. H. Jung, S. Y. Park, B. G. Ahn, B. J. Lee, W. Z. Oh, Decontamination of radioactive corrosion products by KAERI decontamination process, J. of Korea Inst. of Resources Recycling, 9 (1999) 20-29.
- E. Baumgartner, M. A. Blesa, H. Marinovich, A. J. G. Maroto, Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions, Inorg. Chem., 22 (1983) 2224-2226. https://doi.org/10.1021/ic00158a002
- A. Cruickshank, Developing techniques for decontamination, Nucl. Eng. Int., 28 (1983) 41-44.
- C. H. Jung, S. Y. Park, B. G. Ahn, B. J. Lee, W. Z. Oh, Decontamination of radioactive corrosion products by KAERI decontamination process, J. of Korean Inst. of Resources Recycling, 8 (1999) 20-29.
- S. J. Kim, M. S. Han, J. I. Kim, K. J. Kim, Development of chemical decontamination process of stainless steel for reactor coolant pump, J. Kor. Inst. Sur. Eng., 40 (2007) 234-240. https://doi.org/10.5695/JKISE.2007.40.5.234
- S. J. Kim, J. I. Kim, K. J. Kim, Development of chemical decontamination process of stainless steel for reactor coolant pump (II), J. Kor. Inst. Surf. Eng., 40 (2007) 271-278. https://doi.org/10.5695/JKISE.2007.40.6.271
- C. J. Wood, C. N. Spalaris, Source book for chemical decontamination of nuclear power plants, Electric Power Research Inst., EPRI-NP-6433, Washington (1989) 118.
- S. J. Kim, M. S. Han, J. I. Kim, K. J. Kim, Development of chemical decontamination process of stainless steel for reactor coolant pump, J. Kor. Inst. Sur. Eng., 40 (2007) 234-240. https://doi.org/10.5695/JKISE.2007.40.5.234
- E. B. Borghi, S. P. Ali, P. J. Morando, M. A. Blesa, Cleaning of stainless steel surfaces and oxide dissolution by malonic and oxalic acids, J. Nucl. Mater., 229 (1996) 115-123. https://doi.org/10.1016/0022-3115(95)00201-4
- J. Y. Jung, S. Y. Park, H. J. Won, S. B. kim, W. K. Choi, J. K. Moon, S. J. Park, Corrosion properties of Inconel-600 and 304 stainless steel in new oxidative and reductive decontamination reagent, Met. Mater. Int., 21 (2015) 678-685. https://doi.org/10.1007/s12540-015-4572-x
- N. D. Tomashov, Development of the electrochemical theory of metallic corrosion, Corrosion, 20 (1964) 7t-14t. https://doi.org/10.5006/0010-9312-20.1.7t
- L. L. Shreir, Corrosion: metal/environment reactions, newness-butterworths, Boston (1976) 3.
- J. J. Echenrod, C. W. kovach, Properties of austenitic stainless steels and their weld metals(Influence of Slight Chemistry Variations), American society for testing and materials, Philadelpphia (1979) 17.