DOI QR코드

DOI QR Code

A Short Review of Light Barrier Materials for Food and Beverage Packaging

  • Kwon, Seongyoung (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University) ;
  • Orsuwan, Aungkana (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University) ;
  • Bumbudsanpharoke, Nattinee (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University) ;
  • Yoon, ChanSuk (Agency for Korea National Food Cluster) ;
  • Choi, Jungwook (Agency for Korea National Food Cluster) ;
  • Ko, Seonghyuk (Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University)
  • Received : 2018.12.17
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

Photo-oxidation is one of the main causes of food deterioration of great variety of foods, such as dairy products, nuts, meat products, and wine. It causes a loss of both nutritional value and sensorial quality of products and may even leads to the formation of toxic compounds. Active packaging for food and beverages has been investigated and developed with embedding light absorbers or blocking materials into the plastics. In recent years, several novel light barrier materials have been proposed as an alternative option for different applications. This article reviews the up-to-date technology in light absorber and blocking material with special emphasis on chemical compound and mechanism. Inorganic, organic, hybrid organic-inorganic, and natural light absorbers were scoped. The challenges and future perspectives of light barrier materials are also discussed.

Keywords

References

  1. Pattison, D. I., Rahmanto, A. S., and Davies, M. J. 2012. Photooxidation of proteins. Photochem Photobiol Sci 11: 38-53. https://doi.org/10.1039/C1PP05164D
  2. Shiota, M., Ikeda, N., Konishi, H., and Yoshioka, T. 2002. Photooxidative stability of ice cream prepared from milk fat. Journal of Food Science 67: 1200-1207. https://doi.org/10.1111/j.1365-2621.2002.tb09477.x
  3. Thron, M., Eichner, K., and Ziegleder, G. 2001. The influence of light of different wavelengths on chlorophyll-containing foods. Lebensmittel-Wissenschaft und Technologie-Food Science and Technology 34: 542-548. https://doi.org/10.1006/fstl.2001.0801
  4. Bekbolet, M. 1990. Light effects on food. Journal of Food Protection 53: 430-440. https://doi.org/10.4315/0362-028X-53.5.430
  5. Choe, E. and Min, D. B. 2005. Chemistry and reactions of reactive oxygen species in foods. Journal of Food Science 70: R142-R159. https://doi.org/10.1111/j.1365-2621.2005.tb07087.x
  6. Bradley, D. G. and Min, D. B. 1992. Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition 31: 211-236. https://doi.org/10.1080/10408399209527570
  7. Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere, J. 1999. Developments in the active packaging of foods. Trends in Food Science & Technology 10: 77-86. https://doi.org/10.1016/S0924-2244(99)00032-1
  8. Coltro, L., Padula, M., Saron, E. S., Borghetti, J., and Buratin, A. E. P. 2003. Evaluation of a UV absorber added to PET bottles for edible oil packaging. Packaging Technology and Science 16: 15-20. https://doi.org/10.1002/pts.607
  9. Pascall, M. A., Harte, B. R., Giacin, J. R., and Gray, J. I. 1995. Decreasing lipid oxidation in soybean oil by a UV absorber in the packaging material. Journal of Food Science 60: 1116-1119. https://doi.org/10.1111/j.1365-2621.1995.tb06305.x
  10. Yang, F., Li, X. L., Meng, D. L., and Yang, Y. L. 2017. Determination of ultraviolet absorbers and light stabilizers in food packaging bags by magnetic solid phase extraction followed by high-performance liquid chromatography. Food Analytical Methods 10: 3247-3254. https://doi.org/10.1007/s12161-017-0896-0
  11. Duncan, S. and Hannah, S. 2012. Light-protective packaging materials for foods and beverages. In: Yam, K. L. and Lee, D. S. (Eds.), Emerging Food Packaging Technologies: Principles and Practice. p. 303.
  12. Psomiadou, E. and Tsimidou, M. 2002. Stability of virgin olive oil. 2. Photo-oxidation studies. Journal of Agricultural and Food Chemistry 50: 722-727. https://doi.org/10.1021/jf010847u
  13. Cardoso, D. R., Libardi, S. H. and Skibsted, L. H. 2012. Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function 3: 487-502. https://doi.org/10.1039/c2fo10246c
  14. Gargouri, B., Zribi, A., and Bouaziz, M. 2015. Effect of containers on the quality of Chemlali olive oil during storage. Journal of Food Science and Technology 52: 1948-1959. https://doi.org/10.1007/s13197-014-1273-2
  15. Ludin, N. A., Mahmoud, A. M. A. A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., and Karim, N. S. A. 2014. Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews 31: 386-396. https://doi.org/10.1016/j.rser.2013.12.001
  16. Dalsgaard, T. K., Sorensen, J., Bakman, M., Vognsen, L., Nebel, C., Albrechtsen, R., and Nielsen, J. H. 2010. Light-induced protein and lipid oxidation in cheese: Dependence on fat content and packaging conditions. Dairy Science & Technology 90: 565-577. https://doi.org/10.1051/dst/2010019
  17. Semagoto, H. M., Liu, D. S., Koboyatau, K., Hu, J. H., Lu, N. Y., Liu, X. M., Regenstein, J. M., and Zhou, P. 2014. Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Research International 62: 580-588. https://doi.org/10.1016/j.foodres.2014.04.012
  18. Kiritsakis, A. and Dugan, L. R. 1985. Studies in photooxidation of olive oil. Journal of the American Oil Chemists Society 62: 892-896. https://doi.org/10.1007/BF02541753
  19. Zayat, M., Parejo, P. G., and Levy, D. 2007. Preventing UVlight damage of light sensitive materials using a highly protective UV-absorbing coating. Chemical Society Reviews 36: 1270-1281. https://doi.org/10.1039/b608888k
  20. Dalsgaard, T. K., Otzen, D., Nielsen, J. H., and Larsen, L. B. 2007. Changes in structures of milk proteins upon photo-oxidation. Journal of Agricultural and Food Chemistry 55: 10968-10976. https://doi.org/10.1021/jf071948g
  21. Gibis, D. and Rieblinger, K., Application of different kinds of packaging to prevent greying of a special type of chilled sausages, The 59th International Congress of Meat Science and Technology (ICOMST), Izmir, Italy, 2013.
  22. Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., and Varghese, T. O. 2017. UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules 99: 37-45. https://doi.org/10.1016/j.ijbiomac.2017.01.152
  23. Cristofoli, K., Brandalise, R. N., and Zeni, M. 2012. Photostabilized LDPE films with UV absorber and HALS as protection against the light for rose sparkling wine. Journal of Food Processing and Technology 3: 166.
  24. Bekbolet, M. 1990. Light effects on food. Journal of Food Protection 53: 430-440. https://doi.org/10.4315/0362-028X-53.5.430
  25. Mortensen, G., Bertelsen, G., Mortensen, B. K., and Stapelfeldt, H. 2004. Light-induced changes in packaged cheeses-A review. International Dairy Journal 14: 85-102. https://doi.org/10.1016/S0958-6946(03)00169-9
  26. Bradley Jr, R. 1980. Effect of light on alteration of nutritional value and flavor of milk: A review. Journal of Food Protection 43: 314-320. https://doi.org/10.4315/0362-028X-43.4.314
  27. Sattar, A., deMan, J. M., and Furia, T. E. 1975. Photooxidation of milk and milk products: A review. Critical Reviews in Food Science & Nutrition 7: 13-37. https://doi.org/10.1080/10408397509527200
  28. Kim, K. H., Hong, E. J., Park, S. J., Kang, J. W., and Noh, B. S. 2011. Pattern recognition analysis for volatile compounds of the whole, skim, UHT-, HTST-, and LTLT-milk under LED irradiations. Korean J. Food Sci. Ani. Resour. 31: 596-602. https://doi.org/10.5851/kosfa.2011.31.4.596
  29. Andres, A. I., Moller, J. K., Adamsen, C. E., and Skibsted, L. H. 2004. High pressure treatment of dry-cured Iberian ham. Effect on radical formation, lipid oxidation and colour. European Food Research and Technology 219: 205-210.
  30. Adamsen, C. E., Moller, J. K., Hismani, R., and Skibsted, L. H. 2004. Thermal and photochemical degradation of myoglobin pigments in relation to colour stability of sliced drycured Parma ham and sliced dry-cured ham produced with nitrite salt. European Food Research and Technology 218: 403-409. https://doi.org/10.1007/s00217-004-0891-8
  31. Kim, H.-W., Bae, S.-K., and Yi, H.-S. 2003. Research on the quality properties of olive oils available in Korea. Korean Journal of Food Science and Technol 35: 1064-1071.
  32. Moyano, M. J., Heredia, F. J., and Melendez-Martinez, A. J. 2010. The color of olive oils: The pigments and their likely health benefits and visual and instrumental methods of analysis. Comprehensive Reviews in Food Science and Food Safety 9: 278-291. https://doi.org/10.1111/j.1541-4337.2010.00109.x
  33. Nam, H.-Y., Lee, J.-W., Hong, J.-H., and Lee, K.-T. 2007. Analysis of physicochemical charaterization and volatiles in pure or refined olive oils. Journal of the Korean Society of Food Science and Nutrition 36: 1409-1416. https://doi.org/10.3746/jkfn.2007.36.11.1409
  34. Kuskoski, E. M., Asuero, A. G., Garcia-Parilla, M. C., Troncoso, A. M., and Fett, R. 2004. Actividad antioxidante de pigmentos antocianicos. Food Science and Technology 24: 691-693. https://doi.org/10.1590/S0101-20612004000400036
  35. Mexis, S. F., Badeka, A. V., and Kontominas, M. G. 2009. Quality evaluation of raw ground almond kernels (Prunus dulcis): Effect of active and modified atmosphere packaging, container oxygen barrier and storage conditions. Innovative Food Science & Emerging Technologies 10: 580-589. https://doi.org/10.1016/j.ifset.2009.05.002
  36. Tian, F., Decker, E. A., and Goddard, J. M. 2013. Controlling lipid oxidation of food by active packaging technologies. Food & Function 4: 669-680. https://doi.org/10.1039/c3fo30360h
  37. Calvo, M. E., Castro Smirnov, J. R., and Miguez, H. 2012. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics 50: 945-956. https://doi.org/10.1002/polb.23087
  38. Smith, A. M. and Nie, S. 2009. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts of Chemical Research 43: 190-200.
  39. Wetchakun, N., Chaiwichain, S., Inceesungvorn, B., Pingmuang, K., Phanichphant, S., Minett, A. I., and Chen, J. 2012. $BiVO_4/CeO_2$ nanocomposites with high visible-light-induced photocatalytic activity. ACS Applied Materials & Interfaces 4: 3718-3723. https://doi.org/10.1021/am300812n
  40. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271. https://doi.org/10.1126/science.1061051
  41. Rehman, S., Ullah, R., Butt, A. M., and Gohar, N. D. 2009. Strategies of making $TiO_2$ and ZnO visible light active. Journal of Hazardous materials 170: 560-569. https://doi.org/10.1016/j.jhazmat.2009.05.064
  42. Nakayama, N. and Hayashi, T. 2007. Preparation and characterization of $TiO_2$ and polymer nanocomposite films with high refractive index. Journal of Applied Polymer Science 105: 3662-3672. https://doi.org/10.1002/app.26451
  43. Wang, Z. Y., Lu, Z., Mahoney, C., Yan, J. J., Ferebee, R., Luo, D. L., Matyjaszewski, K., and Bockstaller, M. R. 2017. Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers. ACS Applied Materials & Interfaces 9: 7515-7522. https://doi.org/10.1021/acsami.6b12666
  44. Cox, A., DeWeerd, A. J., and Linden, J. 2002. An experiment to measure Mie and Rayleigh total scattering cross sections. American Journal of Physics 70: 620-625. https://doi.org/10.1119/1.1466815
  45. Dransfield, G. 2000. Inorganic sunscreens. Radiation Protection Dosimetry 91: 271-273. https://doi.org/10.1093/oxfordjournals.rpd.a033216
  46. Hashimoto, A. and Sakamoto, K. 2011. UV-blocking film for food storage using titanium dioxide. Food Science and Technology Research 17: 199-202. https://doi.org/10.3136/fstr.17.199
  47. Ren, J. L., Wang, S. Y., Gao, C. D., Chen, X. F., Li, W. Y., and Peng, F. 2015. $TiO_2$-containing PVA/xylan composite films with enhanced mechanical properties, high hydrophobicity and UV shielding performance. Cellulose 22: 593-602. https://doi.org/10.1007/s10570-014-0482-1
  48. Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W. 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95: 69-96. https://doi.org/10.1021/cr00033a004
  49. Lizundia, E., Ruiz-Rubio, L., Vilas, J. L., and Leon, L. M. 2016. Poly (L-lactide)/ZnO nanocomposites as efficient UVshielding coatings for packaging applications. Journal of Applied Polymer Science 133: 424261-424267.
  50. Coughlin, G. and Schambony, S. 2008. New UV absorber for PET packaging: Better protection with less discoloration. Journal of Plastic Film & Sheeting 24: 227-238. https://doi.org/10.1177/8756087908101216
  51. Kickelbick, G. 2007. Hybrid materials: Synthesis, characterization, and applications. John Wiley & Sons, Weinheim, Germany, 2007.
  52. Parejo, P. G., Zayat, M., and Levy, D. 2010. Photostability and retention of UV absorber molecules in sol-gel hybrid UVprotective coatings. Journal of Sol-Gel Science and Technology 53: 280-286. https://doi.org/10.1007/s10971-009-2088-x
  53. Cao, T. C., Xu, K. L., Chen, G. M., and Guo, C. Y. 2013. Poly (ethylene terephthalate) nanocomposites with a strong UVshielding function using UV-absorber intercalated layered double hydroxides. RSC Advances 3: 6282-6285. https://doi.org/10.1039/c3ra23321a
  54. Li, S., Toprak, M. S., Jo, Y. S., Dobson, J., Kim, D. K., and Muhammed, M. 2007. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Advanced Materials 19: 4347-4352. https://doi.org/10.1002/adma.200700736
  55. Zhang, B. and Han, J. 2016. Preparation and UV-protective property of PVAc/ZnO and PVAc/$TiO_2$ microcapsules/poly (lactic acid) nanocomposites. Fibers and Polymers 17: 1849-1857. https://doi.org/10.1007/s12221-016-6679-1
  56. Hou, X. L., Chen, X. Z., Cheng, Y. X., Xu, H. L., Chen, L. F., and Yang, Y. Q. 2013. Dyeing and UV-protection properties of water extracts from orange peel. Journal of Cleaner Production 52: 410-419. https://doi.org/10.1016/j.jclepro.2013.03.004
  57. Mongkholrattanasit, R., Krystůfek, J., Wiener, J., and Vikova, M. 2011. UV protection properties of silk fabric dyed with eucalyptus leaf extract. The Journal of The Textile Institute 102: 272-279. https://doi.org/10.1080/00405001003722369
  58. Wang, Y., Li, T., Ma, P. M., Bai, H. Y., Xie, Y., Chen, M. Q., and Dong, W. F. 2016. Simultaneous enhancements of UVshielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustainable Chemistry & Engineering 4: 2252-2258. https://doi.org/10.1021/acssuschemeng.5b01734
  59. Nouri, L. and Mohammadi Nafchi, A. 2014. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with Betel leaves extract. International Journal of Biological Macromolecules 66: 254-259. https://doi.org/10.1016/j.ijbiomac.2014.02.044
  60. Versino, F. and Garcia, M. A. 2014. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products 58: 305-314. https://doi.org/10.1016/j.indcrop.2014.04.040
  61. Yu, S.-H., Tsai, M.-L., Lin, B.-X., Lin, C.-W., and Mi, F.-L. 2015. Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced ${\beta}$-carotene degradation. Food Hydrocolloids 44: 491-505. https://doi.org/10.1016/j.foodhyd.2014.10.022
  62. Bodai, Z., Kirchkeszner, C., Novak, M., Nyiri, Z., Kovacs, J., Magyar, N., Ivan, B., Rikker, T., and Eke, Z. 2015. Migration of Tinuvin P and Irganox 3114 into milk and the corresponding authorised food simulant. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 32: 1358-1366.
  63. Monteiro, M., Nerin, C., and Reyes, F. 1999. Migration of Tinuvin P, a UV stabilizer, from PET bottles into fatty-food simulants. Packaging Technology and Science: An International Journal 12: 241-248. https://doi.org/10.1002/(SICI)1099-1522(199909/10)12:5<241::AID-PTS478>3.0.CO;2-V
  64. Begley, T. H., Biles, J. E., Cunningham, C., and Piringer, O. 2004. Migration of a UV stabilizer from polyethylene terephthalate (PET) into food simulants. Food Additives and Contaminants 21: 1007-1014. https://doi.org/10.1080/02652030400010447
  65. Godnjavec, J., Znoj, B., Veronovski, N., and Venturini, P. 2012. Polyhedral oligomeric silsesquioxanes as titanium dioxide surface modifiers for transparent acrylic UV blocking hybrid coating. Progress in Organic Coatings 74: 654-659. https://doi.org/10.1016/j.porgcoat.2011.09.032
  66. Zhang, Y., Wu, Y., Chen, M., and Wu, L. 2010. Fabrication method of $TiO_2-SiO_2$ hybrid capsules and their UV-protective property. Colloids and Surfaces A: Physicochemical and Engineering Aspects 353: 216-225.
  67. Jang, J., Bae, J., and Park, E. 2006. Polyacrylonitrile nanofibers: Formation mechanism and applications as a photoluminescent material and carbon-nanofiber precursor. Advanced Functional Materials 16: 1400-1406. https://doi.org/10.1002/adfm.200500598
  68. Xiao, J., Chen, W. Q., Wang, F. Y. K., and Du, J. Z. 2013. Polymer/$TiO_2$ hybrid nanoparticles with highly effective UVscreening but eliminated photocatalytic activity. Macromolecules 46: 375-383. https://doi.org/10.1021/ma3022019

Cited by

  1. High-Strength, Low-Permeable, and Light-Protective Nanocomposite Films Based on a Hybrid Nanopigment and Biodegradable PLA for Food Packaging Applications vol.4, pp.12, 2018, https://doi.org/10.1021/acsomega.9b01731
  2. Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers vol.22, pp.2, 2021, https://doi.org/10.1021/acs.biomac.0c01596
  3. Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films vol.11, pp.3, 2018, https://doi.org/10.3390/nano11030637
  4. Self-Standing Lignin-Containing Willow Bark Nanocellulose Films for Oxygen Blocking and UV Shielding vol.4, pp.3, 2021, https://doi.org/10.1021/acsanm.1c00071
  5. Effect of Tannic Acid and Cellulose Nanocrystals on Antioxidant and Antimicrobial Properties of Gelatin Films vol.9, pp.25, 2018, https://doi.org/10.1021/acssuschemeng.1c01774
  6. Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications vol.30, pp.None, 2018, https://doi.org/10.1016/j.fpsl.2021.100742