References
- Pattison, D. I., Rahmanto, A. S., and Davies, M. J. 2012. Photooxidation of proteins. Photochem Photobiol Sci 11: 38-53. https://doi.org/10.1039/C1PP05164D
- Shiota, M., Ikeda, N., Konishi, H., and Yoshioka, T. 2002. Photooxidative stability of ice cream prepared from milk fat. Journal of Food Science 67: 1200-1207. https://doi.org/10.1111/j.1365-2621.2002.tb09477.x
- Thron, M., Eichner, K., and Ziegleder, G. 2001. The influence of light of different wavelengths on chlorophyll-containing foods. Lebensmittel-Wissenschaft und Technologie-Food Science and Technology 34: 542-548. https://doi.org/10.1006/fstl.2001.0801
- Bekbolet, M. 1990. Light effects on food. Journal of Food Protection 53: 430-440. https://doi.org/10.4315/0362-028X-53.5.430
- Choe, E. and Min, D. B. 2005. Chemistry and reactions of reactive oxygen species in foods. Journal of Food Science 70: R142-R159. https://doi.org/10.1111/j.1365-2621.2005.tb07087.x
- Bradley, D. G. and Min, D. B. 1992. Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition 31: 211-236. https://doi.org/10.1080/10408399209527570
- Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere, J. 1999. Developments in the active packaging of foods. Trends in Food Science & Technology 10: 77-86. https://doi.org/10.1016/S0924-2244(99)00032-1
- Coltro, L., Padula, M., Saron, E. S., Borghetti, J., and Buratin, A. E. P. 2003. Evaluation of a UV absorber added to PET bottles for edible oil packaging. Packaging Technology and Science 16: 15-20. https://doi.org/10.1002/pts.607
- Pascall, M. A., Harte, B. R., Giacin, J. R., and Gray, J. I. 1995. Decreasing lipid oxidation in soybean oil by a UV absorber in the packaging material. Journal of Food Science 60: 1116-1119. https://doi.org/10.1111/j.1365-2621.1995.tb06305.x
- Yang, F., Li, X. L., Meng, D. L., and Yang, Y. L. 2017. Determination of ultraviolet absorbers and light stabilizers in food packaging bags by magnetic solid phase extraction followed by high-performance liquid chromatography. Food Analytical Methods 10: 3247-3254. https://doi.org/10.1007/s12161-017-0896-0
- Duncan, S. and Hannah, S. 2012. Light-protective packaging materials for foods and beverages. In: Yam, K. L. and Lee, D. S. (Eds.), Emerging Food Packaging Technologies: Principles and Practice. p. 303.
- Psomiadou, E. and Tsimidou, M. 2002. Stability of virgin olive oil. 2. Photo-oxidation studies. Journal of Agricultural and Food Chemistry 50: 722-727. https://doi.org/10.1021/jf010847u
- Cardoso, D. R., Libardi, S. H. and Skibsted, L. H. 2012. Riboflavin as a photosensitizer. Effects on human health and food quality. Food & Function 3: 487-502. https://doi.org/10.1039/c2fo10246c
- Gargouri, B., Zribi, A., and Bouaziz, M. 2015. Effect of containers on the quality of Chemlali olive oil during storage. Journal of Food Science and Technology 52: 1948-1959. https://doi.org/10.1007/s13197-014-1273-2
- Ludin, N. A., Mahmoud, A. M. A. A., Mohamad, A. B., Kadhum, A. A. H., Sopian, K., and Karim, N. S. A. 2014. Review on the development of natural dye photosensitizer for dye-sensitized solar cells. Renewable & Sustainable Energy Reviews 31: 386-396. https://doi.org/10.1016/j.rser.2013.12.001
- Dalsgaard, T. K., Sorensen, J., Bakman, M., Vognsen, L., Nebel, C., Albrechtsen, R., and Nielsen, J. H. 2010. Light-induced protein and lipid oxidation in cheese: Dependence on fat content and packaging conditions. Dairy Science & Technology 90: 565-577. https://doi.org/10.1051/dst/2010019
- Semagoto, H. M., Liu, D. S., Koboyatau, K., Hu, J. H., Lu, N. Y., Liu, X. M., Regenstein, J. M., and Zhou, P. 2014. Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Research International 62: 580-588. https://doi.org/10.1016/j.foodres.2014.04.012
- Kiritsakis, A. and Dugan, L. R. 1985. Studies in photooxidation of olive oil. Journal of the American Oil Chemists Society 62: 892-896. https://doi.org/10.1007/BF02541753
- Zayat, M., Parejo, P. G., and Levy, D. 2007. Preventing UVlight damage of light sensitive materials using a highly protective UV-absorbing coating. Chemical Society Reviews 36: 1270-1281. https://doi.org/10.1039/b608888k
- Dalsgaard, T. K., Otzen, D., Nielsen, J. H., and Larsen, L. B. 2007. Changes in structures of milk proteins upon photo-oxidation. Journal of Agricultural and Food Chemistry 55: 10968-10976. https://doi.org/10.1021/jf071948g
- Gibis, D. and Rieblinger, K., Application of different kinds of packaging to prevent greying of a special type of chilled sausages, The 59th International Congress of Meat Science and Technology (ICOMST), Izmir, Italy, 2013.
- Narayanan, M., Loganathan, S., Valapa, R. B., Thomas, S., and Varghese, T. O. 2017. UV protective poly(lactic acid)/rosin films for sustainable packaging. International Journal of Biological Macromolecules 99: 37-45. https://doi.org/10.1016/j.ijbiomac.2017.01.152
- Cristofoli, K., Brandalise, R. N., and Zeni, M. 2012. Photostabilized LDPE films with UV absorber and HALS as protection against the light for rose sparkling wine. Journal of Food Processing and Technology 3: 166.
- Bekbolet, M. 1990. Light effects on food. Journal of Food Protection 53: 430-440. https://doi.org/10.4315/0362-028X-53.5.430
- Mortensen, G., Bertelsen, G., Mortensen, B. K., and Stapelfeldt, H. 2004. Light-induced changes in packaged cheeses-A review. International Dairy Journal 14: 85-102. https://doi.org/10.1016/S0958-6946(03)00169-9
- Bradley Jr, R. 1980. Effect of light on alteration of nutritional value and flavor of milk: A review. Journal of Food Protection 43: 314-320. https://doi.org/10.4315/0362-028X-43.4.314
- Sattar, A., deMan, J. M., and Furia, T. E. 1975. Photooxidation of milk and milk products: A review. Critical Reviews in Food Science & Nutrition 7: 13-37. https://doi.org/10.1080/10408397509527200
- Kim, K. H., Hong, E. J., Park, S. J., Kang, J. W., and Noh, B. S. 2011. Pattern recognition analysis for volatile compounds of the whole, skim, UHT-, HTST-, and LTLT-milk under LED irradiations. Korean J. Food Sci. Ani. Resour. 31: 596-602. https://doi.org/10.5851/kosfa.2011.31.4.596
- Andres, A. I., Moller, J. K., Adamsen, C. E., and Skibsted, L. H. 2004. High pressure treatment of dry-cured Iberian ham. Effect on radical formation, lipid oxidation and colour. European Food Research and Technology 219: 205-210.
- Adamsen, C. E., Moller, J. K., Hismani, R., and Skibsted, L. H. 2004. Thermal and photochemical degradation of myoglobin pigments in relation to colour stability of sliced drycured Parma ham and sliced dry-cured ham produced with nitrite salt. European Food Research and Technology 218: 403-409. https://doi.org/10.1007/s00217-004-0891-8
- Kim, H.-W., Bae, S.-K., and Yi, H.-S. 2003. Research on the quality properties of olive oils available in Korea. Korean Journal of Food Science and Technol 35: 1064-1071.
- Moyano, M. J., Heredia, F. J., and Melendez-Martinez, A. J. 2010. The color of olive oils: The pigments and their likely health benefits and visual and instrumental methods of analysis. Comprehensive Reviews in Food Science and Food Safety 9: 278-291. https://doi.org/10.1111/j.1541-4337.2010.00109.x
- Nam, H.-Y., Lee, J.-W., Hong, J.-H., and Lee, K.-T. 2007. Analysis of physicochemical charaterization and volatiles in pure or refined olive oils. Journal of the Korean Society of Food Science and Nutrition 36: 1409-1416. https://doi.org/10.3746/jkfn.2007.36.11.1409
- Kuskoski, E. M., Asuero, A. G., Garcia-Parilla, M. C., Troncoso, A. M., and Fett, R. 2004. Actividad antioxidante de pigmentos antocianicos. Food Science and Technology 24: 691-693. https://doi.org/10.1590/S0101-20612004000400036
- Mexis, S. F., Badeka, A. V., and Kontominas, M. G. 2009. Quality evaluation of raw ground almond kernels (Prunus dulcis): Effect of active and modified atmosphere packaging, container oxygen barrier and storage conditions. Innovative Food Science & Emerging Technologies 10: 580-589. https://doi.org/10.1016/j.ifset.2009.05.002
- Tian, F., Decker, E. A., and Goddard, J. M. 2013. Controlling lipid oxidation of food by active packaging technologies. Food & Function 4: 669-680. https://doi.org/10.1039/c3fo30360h
- Calvo, M. E., Castro Smirnov, J. R., and Miguez, H. 2012. Novel approaches to flexible visible transparent hybrid films for ultraviolet protection. Journal of Polymer Science Part B: Polymer Physics 50: 945-956. https://doi.org/10.1002/polb.23087
- Smith, A. M. and Nie, S. 2009. Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts of Chemical Research 43: 190-200.
-
Wetchakun, N., Chaiwichain, S., Inceesungvorn, B., Pingmuang, K., Phanichphant, S., Minett, A. I., and Chen, J. 2012.
$BiVO_4/CeO_2$ nanocomposites with high visible-light-induced photocatalytic activity. ACS Applied Materials & Interfaces 4: 3718-3723. https://doi.org/10.1021/am300812n - Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y. 2001. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293: 269-271. https://doi.org/10.1126/science.1061051
-
Rehman, S., Ullah, R., Butt, A. M., and Gohar, N. D. 2009. Strategies of making
$TiO_2$ and ZnO visible light active. Journal of Hazardous materials 170: 560-569. https://doi.org/10.1016/j.jhazmat.2009.05.064 -
Nakayama, N. and Hayashi, T. 2007. Preparation and characterization of
$TiO_2$ and polymer nanocomposite films with high refractive index. Journal of Applied Polymer Science 105: 3662-3672. https://doi.org/10.1002/app.26451 - Wang, Z. Y., Lu, Z., Mahoney, C., Yan, J. J., Ferebee, R., Luo, D. L., Matyjaszewski, K., and Bockstaller, M. R. 2017. Transparent and high refractive index thermoplastic polymer glasses using evaporative ligand exchange of hybrid particle fillers. ACS Applied Materials & Interfaces 9: 7515-7522. https://doi.org/10.1021/acsami.6b12666
- Cox, A., DeWeerd, A. J., and Linden, J. 2002. An experiment to measure Mie and Rayleigh total scattering cross sections. American Journal of Physics 70: 620-625. https://doi.org/10.1119/1.1466815
- Dransfield, G. 2000. Inorganic sunscreens. Radiation Protection Dosimetry 91: 271-273. https://doi.org/10.1093/oxfordjournals.rpd.a033216
- Hashimoto, A. and Sakamoto, K. 2011. UV-blocking film for food storage using titanium dioxide. Food Science and Technology Research 17: 199-202. https://doi.org/10.3136/fstr.17.199
-
Ren, J. L., Wang, S. Y., Gao, C. D., Chen, X. F., Li, W. Y., and Peng, F. 2015.
$TiO_2$ -containing PVA/xylan composite films with enhanced mechanical properties, high hydrophobicity and UV shielding performance. Cellulose 22: 593-602. https://doi.org/10.1007/s10570-014-0482-1 - Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W. 1995. Environmental applications of semiconductor photocatalysis. Chemical Reviews 95: 69-96. https://doi.org/10.1021/cr00033a004
- Lizundia, E., Ruiz-Rubio, L., Vilas, J. L., and Leon, L. M. 2016. Poly (L-lactide)/ZnO nanocomposites as efficient UVshielding coatings for packaging applications. Journal of Applied Polymer Science 133: 424261-424267.
- Coughlin, G. and Schambony, S. 2008. New UV absorber for PET packaging: Better protection with less discoloration. Journal of Plastic Film & Sheeting 24: 227-238. https://doi.org/10.1177/8756087908101216
- Kickelbick, G. 2007. Hybrid materials: Synthesis, characterization, and applications. John Wiley & Sons, Weinheim, Germany, 2007.
- Parejo, P. G., Zayat, M., and Levy, D. 2010. Photostability and retention of UV absorber molecules in sol-gel hybrid UVprotective coatings. Journal of Sol-Gel Science and Technology 53: 280-286. https://doi.org/10.1007/s10971-009-2088-x
- Cao, T. C., Xu, K. L., Chen, G. M., and Guo, C. Y. 2013. Poly (ethylene terephthalate) nanocomposites with a strong UVshielding function using UV-absorber intercalated layered double hydroxides. RSC Advances 3: 6282-6285. https://doi.org/10.1039/c3ra23321a
- Li, S., Toprak, M. S., Jo, Y. S., Dobson, J., Kim, D. K., and Muhammed, M. 2007. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Advanced Materials 19: 4347-4352. https://doi.org/10.1002/adma.200700736
-
Zhang, B. and Han, J. 2016. Preparation and UV-protective property of PVAc/ZnO and PVAc/
$TiO_2$ microcapsules/poly (lactic acid) nanocomposites. Fibers and Polymers 17: 1849-1857. https://doi.org/10.1007/s12221-016-6679-1 - Hou, X. L., Chen, X. Z., Cheng, Y. X., Xu, H. L., Chen, L. F., and Yang, Y. Q. 2013. Dyeing and UV-protection properties of water extracts from orange peel. Journal of Cleaner Production 52: 410-419. https://doi.org/10.1016/j.jclepro.2013.03.004
- Mongkholrattanasit, R., Krystůfek, J., Wiener, J., and Vikova, M. 2011. UV protection properties of silk fabric dyed with eucalyptus leaf extract. The Journal of The Textile Institute 102: 272-279. https://doi.org/10.1080/00405001003722369
- Wang, Y., Li, T., Ma, P. M., Bai, H. Y., Xie, Y., Chen, M. Q., and Dong, W. F. 2016. Simultaneous enhancements of UVshielding properties and photostability of poly(vinyl alcohol) via incorporation of sepia eumelanin. ACS Sustainable Chemistry & Engineering 4: 2252-2258. https://doi.org/10.1021/acssuschemeng.5b01734
- Nouri, L. and Mohammadi Nafchi, A. 2014. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with Betel leaves extract. International Journal of Biological Macromolecules 66: 254-259. https://doi.org/10.1016/j.ijbiomac.2014.02.044
- Versino, F. and Garcia, M. A. 2014. Cassava (Manihot esculenta) starch films reinforced with natural fibrous filler. Industrial Crops and Products 58: 305-314. https://doi.org/10.1016/j.indcrop.2014.04.040
-
Yu, S.-H., Tsai, M.-L., Lin, B.-X., Lin, C.-W., and Mi, F.-L. 2015. Tea catechins-cross-linked methylcellulose active films for inhibition of light irradiation and lipid peroxidation induced
${\beta}$ -carotene degradation. Food Hydrocolloids 44: 491-505. https://doi.org/10.1016/j.foodhyd.2014.10.022 - Bodai, Z., Kirchkeszner, C., Novak, M., Nyiri, Z., Kovacs, J., Magyar, N., Ivan, B., Rikker, T., and Eke, Z. 2015. Migration of Tinuvin P and Irganox 3114 into milk and the corresponding authorised food simulant. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 32: 1358-1366.
- Monteiro, M., Nerin, C., and Reyes, F. 1999. Migration of Tinuvin P, a UV stabilizer, from PET bottles into fatty-food simulants. Packaging Technology and Science: An International Journal 12: 241-248. https://doi.org/10.1002/(SICI)1099-1522(199909/10)12:5<241::AID-PTS478>3.0.CO;2-V
- Begley, T. H., Biles, J. E., Cunningham, C., and Piringer, O. 2004. Migration of a UV stabilizer from polyethylene terephthalate (PET) into food simulants. Food Additives and Contaminants 21: 1007-1014. https://doi.org/10.1080/02652030400010447
- Godnjavec, J., Znoj, B., Veronovski, N., and Venturini, P. 2012. Polyhedral oligomeric silsesquioxanes as titanium dioxide surface modifiers for transparent acrylic UV blocking hybrid coating. Progress in Organic Coatings 74: 654-659. https://doi.org/10.1016/j.porgcoat.2011.09.032
-
Zhang, Y., Wu, Y., Chen, M., and Wu, L. 2010. Fabrication method of
$TiO_2-SiO_2$ hybrid capsules and their UV-protective property. Colloids and Surfaces A: Physicochemical and Engineering Aspects 353: 216-225. - Jang, J., Bae, J., and Park, E. 2006. Polyacrylonitrile nanofibers: Formation mechanism and applications as a photoluminescent material and carbon-nanofiber precursor. Advanced Functional Materials 16: 1400-1406. https://doi.org/10.1002/adfm.200500598
-
Xiao, J., Chen, W. Q., Wang, F. Y. K., and Du, J. Z. 2013. Polymer/
$TiO_2$ hybrid nanoparticles with highly effective UVscreening but eliminated photocatalytic activity. Macromolecules 46: 375-383. https://doi.org/10.1021/ma3022019
Cited by
- High-Strength, Low-Permeable, and Light-Protective Nanocomposite Films Based on a Hybrid Nanopigment and Biodegradable PLA for Food Packaging Applications vol.4, pp.12, 2018, https://doi.org/10.1021/acsomega.9b01731
- Lignin Nanoparticle Nucleation and Growth on Cellulose and Chitin Nanofibers vol.22, pp.2, 2021, https://doi.org/10.1021/acs.biomac.0c01596
- Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films vol.11, pp.3, 2018, https://doi.org/10.3390/nano11030637
- Self-Standing Lignin-Containing Willow Bark Nanocellulose Films for Oxygen Blocking and UV Shielding vol.4, pp.3, 2021, https://doi.org/10.1021/acsanm.1c00071
- Effect of Tannic Acid and Cellulose Nanocrystals on Antioxidant and Antimicrobial Properties of Gelatin Films vol.9, pp.25, 2018, https://doi.org/10.1021/acssuschemeng.1c01774
- Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications vol.30, pp.None, 2018, https://doi.org/10.1016/j.fpsl.2021.100742