Figure 3.1. Plot of survival curves of Kaplan-Meier.
Table 1.1. Explanation for variables of the life insurance data
Table 3.1. Basic statistics for the life insurance data
Table 3.2. Comparison of survival rates among groups (P : p-value)
Table 3.3. Results of fitting Cox’s proportional hazards model for life insurance data
Table 3.4. Variable selection and estimation using Cox’s proportional hazards model for life insurance data:estimates (SE)
참고문헌
- Choi, Y. M. and Choi, W. (2008). The effect of economic variables on lapse and surrender rate in life insurance, Journal of Insurance and Finance, 55, 3-36.
- Cox, D. R. (1972). Regression models and life tables (with Discussion), Journal of the Royal Statistical Society B, 74, 187-220.
- Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273
- Fan, J. and Li, R. (2002). Variable selection for Cox's proportional hazards model and frailty model, The Annals of Statistics, 30, 74-99. https://doi.org/10.1214/aos/1015362185
- Ha, I. D., Jeong, J. H., and Lee, Y. (2017). Statistical Modelling of Survival Data with Random Effects: H-likelihood, Springer, Singapore.
- Ha, I. D., Noh, M., Kim, J., and Lee, Y. (2018) frailtyHL: frailty models using h-likelihood, From: http://CRAN.Rproject.org/package=frailtyHL.Rpackageversion 2.1.
- Ha, I. D., Noh, M., and Lee, Y.(2012). frailtyHL: a package for fitting frailty models with h-likelihood, The R Journal, 4, 307-320.
- Ha, I. D., Pan, J., Oh, S., and Lee, Y. (2014). Variable selection in general frailty models using penalized h-likelihood, Journal of Computational and Graphical Statistics, 23, 1044-1060. https://doi.org/10.1080/10618600.2013.842489
- Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations, Journal of the American Statistical Association, 53, 457-481. https://doi.org/10.1080/01621459.1958.10501452
- Kim, B., Ha, I. D., Noh, M., Na, M. H., Song, H. C., and Kim, J. (2015). Variable selection in frailty models using frailtyHL R package: breast cancer survival data, The Korea Journal of Applied Statistics, 28, 965-976. https://doi.org/10.5351/KJAS.2015.28.5.965
- Kim, S. Y. and Lee, J. J. (2012). A comparative study on the effects of macroeconomic variables and consumer's dissatisfaction on the lapses of life insurance contracts, Korean Journal of Insurance, 93, 237-269.
- Lee, Y. and Oh, H. S. (2014). A new sparse variable selection via random-effect model, Journal of Multivariate Analysis, 125, 89-99. https://doi.org/10.1016/j.jmva.2013.11.016
- Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society Series B, 58, 267-288.
- Tibshirani, R. (1997). The Lasso method for variable selection in the Cox model, Statistics in Medicine, 16, 385-395. https://doi.org/10.1002/(SICI)1097-0258(19970228)16:4<385::AID-SIM380>3.0.CO;2-3