DOI QR코드

DOI QR Code

In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages

  • Lee, Jae Hoon (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Ahn, Dong Uk (Department of Animal Science, Iowa State University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • 투고 : 2018.10.16
  • 심사 : 2018.11.14
  • 발행 : 2018.12.31

초록

Ovotransferrin (OTF) is a well-known protein of the transferrin family with strong iron chelating activity, resulting in its antimicrobial activity. Furthermore, OTF is known to have antioxidant, anticancer, and antihypertensive activities. However, there have been few studies about the immune-enhancing activity of OTF. In current study, we investigated the immune-enhancing activity of OTF using the murine macrophage cells in vitro. The effect of OTF on production of pro-inflammatory mediators and cytokines were determined using Griess assay and quantitative real-time PCR. Using Neutral Red uptake assay, we confirmed the effect of OTF on phagocytic activity of macrophages. Ovotransferrin significantly increased the production of nitric oxide (NO) and secretion of inducible nitric oxide synthase (iNOS) mRNA with no cytotoxic activity. Ovotransferrin (2 mg/mL) stimulated NO production up to $31.9{\pm}3.5{\mu}M$. Ovotransferrin significantly increased the mRNA expression levels of pro-inflammatory cytokines which are tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), Interleukin-$1{\beta}$ (IL-$1{\beta}$), and IL-6: OTF (2 mg/mL) treatment increased the secretion of mRNA for TNF-${\alpha}$, IL-$1{\beta}$, and IL-6 by 22.20-, 37.91-, and 6.17-fold of the negative control, respectively. The phagocytic activity of macrophages was also increased by OTF treatment significantly compared with negative control. Also, OTF treatment increased phosphorylation level of MAPK signaling pathways. These results indicated that OTF has immune-enhancing activity by activating RAW 264.7 macrophages via MAPK pathways.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET)

참고문헌

  1. Abdallah FB, Chahine, JMEH. 1999. Transferrins, the mechanism of iron release by ovotransferrin. Eur J Biochem 263:912-920. https://doi.org/10.1046/j.1432-1327.1999.00596.x
  2. Abeyrathne ED, Lee HY, Ham JS, Ahn DU. 2013. Separation of ovotransferrin from chicken egg white without using organic solvents. Poult Sci 92:1091-1097. https://doi.org/10.3382/ps.2012-02654
  3. Ahmad W, Jantan I, Kumolosasi E, Haque MA, Bukhari SNA. 2018. Immunomodulatory effects of Tinospora crispa extract and its major compounds on the immune functions of RAW 264.7 macrophages. Int Immunopharmacol 60:141-151. https://doi.org/10.1016/j.intimp.2018.04.046
  4. Cameron DJ, Churchill WH. 1980. Cytotoxicity of human macrophages for tumor cells: Enhancement by bacterial lipopolysaccharides (LPS). J Immunol 124:708-712.
  5. Castro R, Lamas J, Morais P, Sanmartin ML, Orallo F, Leiro J. 2008. Resveratrol modulates innate and inflammatory responses in fish leucocytes. Vet Immunol Immunopathol 126:9-19. https://doi.org/10.1016/j.vetimm.2008.06.001
  6. Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes LF. 2014. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in $I{\kappa}B{\alpha}$/MAPK/ERK signaling pathways. Eur J Pharmacol 724:168-174. https://doi.org/10.1016/j.ejphar.2013.12.016
  7. Cheng A, Wan F, Wang J, Jin Z, Xu X. 2008. Macrophage immunomodulatory activity of polysaccharides isolated from Glycyrrhiza uralensis fish. Int Immunopharmacol 8:43-50. https://doi.org/10.1016/j.intimp.2007.10.006
  8. Dauphinee SM, Karsan A. 2006. Lipopolysaccharide signaling in endothelial cells. Lab Investig 86:9-22. https://doi.org/10.1038/labinvest.3700366
  9. Dong C, Davis RJ, Flavell RA. 2002. MAP kinases in the immune response. Annu Rev Immunol 20:55-72. https://doi.org/10.1146/annurev.immunol.20.091301.131133
  10. Giansanti F, Rossi P, Massucci MT, Botti D, Antonini G, Valenti P, Seganti L. 2002. Antiviral activity of ovotransferrin discloses an evolutionary strategy for the defensive activities of lactoferrin. Biochem Cell Biol 80:125-130. https://doi.org/10.1139/o01-208
  11. Ha YM, Chun SH, Hong ST, Koo YC, Choi HD, Lee KW. 2013. Immune enhancing effect of a Maillard-type lysozyme-galactomannan conjugate via signaling pathways. Int J Biol Macromol 60:399-404. https://doi.org/10.1016/j.ijbiomac.2013.06.007
  12. Han EH, Choi JH, Hwang YP, Park HJ, Choi CY, Chung YC, Seo JK, Jeong HG. 2009. Immunostimulatory activity of aqueous extract isolated from Prunella vulgaris. Food Chem Toxicol 47:62-69. https://doi.org/10.1016/j.fct.2008.10.010
  13. Hong SH, Ku JM, Kim HI, Ahn CW, Park SH, Seo HS, Shin YC, Ko SG. 2017. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice. Food Res Int 99:623-629. https://doi.org/10.1016/j.foodres.2017.06.053
  14. Ibrahim HR, Hoq MI, Aoki T. 2007. Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int J Biol Macromol 41:631-640. https://doi.org/10.1016/j.ijbiomac.2007.08.005
  15. Jeong JH, Jang S, Jung BJ, Jang KS, Kim BG, Chung DK, Kim H. 2015. Differential immune-stimulatory effects of LTAs from different lactic acid bacteria via MAPK signaling pathway in RAW 264.7 cells. Immunobiology 220:460-466. https://doi.org/10.1016/j.imbio.2014.11.002
  16. Lee JH, Moon SH, Kim HS, Park E, Ahn DU, Paik H-D. 2017. Antioxidant and anticancer effects of functional peptides from ovotransferrin hydrolysates. J Sci Food Agric 97:4857-4864. https://doi.org/10.1002/jsfa.8356
  17. Li JW, Liu Y, Li BH, Wang YY, Wang H, Zhou CL. 2016. A polysaccharide purified from Radix Adenophorae promotes cell activation and pro-inflammatory cytokine production in murine RAW264.7 macrophages. Chin J Nat Med 14:370-376.
  18. Li Y, Meng T, Hao N, Tao H, Zou S, Li M, Ming P, Ding H, Dong J, Feng S, Li J, Wang X, Wu J. 2017. Immune regulation mechanism of Astragaloside IV on RAW264.7 cells through activating the $NF-{\kappa}B$/MAPK signaling pathway. Int Immunopharmacol 49:38-49. https://doi.org/10.1016/j.intimp.2017.05.017
  19. Lind M, Hayes A, Caprnda M, Petrovic D, Rodrigo L, Kruzliak P, Zulli A. 2017. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother 93:370-375. https://doi.org/10.1016/j.biopha.2017.06.036
  20. MacMicking J, Xie QW, Nathan C. 1997. Nitric oxide and macrophage function. Annu Rev Immunol 15:323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  21. Mayer B, Hemmens B. 1997. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem Sci 22:477-481. https://doi.org/10.1016/S0968-0004(97)01147-X
  22. Moon SH, Lee JH, Lee YJ, Chang KH, Paik JY, Ahn DU, Paik HD. 2013. Screening for cytotoxic activity of ovotransferrin and its enzyme hydrolysates. Poult Sci 92:424-434. https://doi.org/10.3382/ps.2012-02680
  23. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue JI, Cao Z, Matsumoto K. 1999. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252-256. https://doi.org/10.1038/18465
  24. Ren Z, He C, Fan Y, Si H, Wang Y, Shi Z, Zhao X, Zheng Y, Liu Q, Zhang H. 2014. Immune-enhancing activity of polysaccharides from Cyrtomium macrophyllum. Int J Biol Macromol 70:590-595. https://doi.org/10.1016/j.ijbiomac.2014.07.044
  25. Rincon M, Flavell RA, Davis RA. 2000. The JNK and p38 MAP kinase signaling pathways in T cell-mediated immune responses. Free Radic Biol Med 28:1328-1337. https://doi.org/10.1016/S0891-5849(00)00219-7
  26. Rizk M, Witte MB, Barbul A. 2004. Nitric oxide and wound healing. World J Surg 28:301-306. https://doi.org/10.1007/s00268-003-7396-7
  27. Salvioli S, Capri M, Valensin S, Tieri P, Monti D, Ottaviani E, Franceschi C. 2006. Inflamm-aging, cytokines and aging: State of the art, new hypotheses on the role of mitochondria and new perspectives from systems biology. Curr Pharm Des 12:3161-3171. https://doi.org/10.2174/138161206777947470
  28. Schooltink H, Rose-John S. 2002. Cytokines as therapeutic drugs. J Interferon Cytokine Res 22:505-516. https://doi.org/10.1089/10799900252981981
  29. Seo JY, Lee CW, Choi DJ, Lee J, Lee JY, Park YI. 2015. Ginseng marc-derived low-molecular weight oligosaccharide inhibits the growth of skin melanoma cells via activation RAW264.7 cells. Int Immunopharmacol 29:344-353. https://doi.org/10.1016/j.intimp.2015.10.031
  30. Shen CY, Zhang WL, Jiang JG. 2017. Immune-enhancing activity of polysaccharides from Hibiscus sabdariffa Linn. via MAPK and $NF-{\kappa}B$ signaling pathways in RAW264.7 cells. J Funct Foods 34:118-129. https://doi.org/10.1016/j.jff.2017.03.060
  31. Thieringer R, Fenyk-Melody JE, Le Grand CB, Shelton BA, Detmers PA, Somers EP, Carbin L, Moller DE, Wright SD, Berger J. 2000. Activation of peroxisome proliferator-activated receptor $\gamma$ does not inhibit IL-6 or $TNF-{\alpha}$ responses of macrophages to lipopolysaccharide in vitro or in vivo. J Immunol 164:1046-1054. https://doi.org/10.4049/jimmunol.164.2.1046
  32. Valenti P, Visca P, Antonini G, Orsi N. 1985. Antifungal activity of ovotransferrin towards genus Candida. Mycopathologia 89:169-175. https://doi.org/10.1007/BF00447027
  33. Wang ML, Hou YY, Chiu YS, Chen YH. 2013. Immunomodulatory activities of Gelidium amansii gel extracts on murine RAW 264.7 macrophages. J Food Drug Anal 21:397-403. https://doi.org/10.1016/j.jfda.2013.09.002
  34. Wang W, Zou Y, Li Q, Mao R, Shao X, Jin D, Zheng D, Zhao T, Zhu H, Zhang L, Yang L, Wu X. 2016. Immunomodulatory effects of a polysaccharide purified from Lepidium meyenii Walp. on macrophages. Process Biochem 51:542-553. https://doi.org/10.1016/j.procbio.2016.01.003
  35. Wang Z, Xie J, Yang Y, Zhang F, Wang S, Wu T, Shen M, Xie M. 2017. Sulfated Cyclocarya paliurus polysaccharides markedly attenuates inflammation and oxidative damage in lipopolysaccharide-treated macrophage cells and mice. Sci Rep 7:40402. https://doi.org/10.1038/srep40402
  36. Wu J, Acero-Lopez A. 2012. Ovotransferrin: Structure, bioactivities, and preparation. Food Res Int 46:480-487. https://doi.org/10.1016/j.foodres.2011.07.012
  37. Yamamura Y, Azuma I. 1983. Immunostimulation in cancer patients. Adv Exp Med Biol 166:1-13.
  38. Yu Y, Shen M, Wang Z, Wang Y, Xie M, Xie J. 2017. Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages. Carbohydr Polym 174:669-676. https://doi.org/10.1016/j.carbpol.2017.07.009
  39. Zhao T, Feng Y, Li J, Mao R, Zou Y, Feng W, Zheng D, Wang W, Chen Y, Yang L, Wu X. 2014. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages. Int J Biol Macromol 65:33-40. https://doi.org/10.1016/j.ijbiomac.2014.01.018

피인용 문헌

  1. Anticancer and immunomodulatory activity of egg proteins and peptides: a review vol.98, pp.12, 2018, https://doi.org/10.3382/ps/pez381
  2. The potential of lactoferrin, ovotransferrin and lysozyme as antiviral and immune-modulating agents in COVID-19 vol.15, pp.9, 2020, https://doi.org/10.2217/fvl-2020-0170
  3. Phosphoproteomic analysis of duck egg white and insight into the biological functions of identified phosphoproteins vol.44, pp.10, 2020, https://doi.org/10.1111/jfbc.13367
  4. Iridin Prevented Against Lipopolysaccharide-Induced Inflammatory Responses of Macrophages via Inactivation of PKM2-Mediated Glycolytic Pathways vol.14, pp.None, 2018, https://doi.org/10.2147/jir.s292244
  5. Functional properties of ovotransferrin from chicken egg white and its derived peptides: a review vol.30, pp.5, 2018, https://doi.org/10.1007/s10068-021-00901-3
  6. Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates vol.41, pp.4, 2018, https://doi.org/10.5851/kosfa.2021.e19
  7. The past and future of ovotransferrin: Physicochemical properties, assembly and applications vol.116, pp.None, 2021, https://doi.org/10.1016/j.tifs.2021.07.003
  8. Ovotransferrin exerts bidirectional immunomodulatory activities via TLR4‐mediated signal transduction pathways in RAW264.7 cells vol.9, pp.11, 2021, https://doi.org/10.1002/fsn3.2569