Figure 1. Proposed structures of various 2D materials. (A) Graphene, (B) Graphene oxide, (C) Carbon nitride (g-C3N4), (D) Oxidized carbon nitride (OCN).
Figure 2. Illustration of 18F-labelled graphene oxide by nucleophilic fluorination.
Figure 3. Illustration of 64Cu-chelated nanographene conjugates.
Figure 4. Illustration of DTPA-graphene oxide complex by ϖ – ϖ stacking.
Figure 5. (A) Illustration of synthesis of PEG-OCN. (B) TEM image of water-dispersed PEG-OCN nono-material. (C) Confocal fluorescence microscopic image of RAW264.7 cells using PEG-OCN nanodots after incubation with different concentrations (50 and 100 μg/mL).
참고문헌
- Choi W, Lahiri I, Seelaboyina R, Kang YS. Synthesis of graphene and its applications: A Review. Crit Rev Solid State Mater Sci 2010;35:52-71. https://doi.org/10.1080/10408430903505036
- Yang K, Feng L, Hong H, Cai W, Liu Z. Preparation and functionalization of graphene nanocomposites for biomedical applications. Nat Protoc 2013;8:2392-2403. https://doi.org/10.1038/nprot.2013.146
- Chen D, Feng H, Li J. Graphene Oxide: Preparation, functionalization, and electrochemical applications. Chem Rev 2012;112:6027-6053. https://doi.org/10.1021/cr300115g
- Chabot V, Higgins D, Yu A, Xiao X, Chen Z, Zhang J. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment. Energy Environ Sci 2014;7:1564-1596. https://doi.org/10.1039/c3ee43385d
- Yew YT, Lim CS, Eng AYS, Oh J, Park S, Pumera M. Electrochemistry of layered graphitic carbon nitride synthesised from various precursors: searching for catalytic effects. ChemPhysChem 2016;17:481-488. https://doi.org/10.1002/cphc.201501009
- Zhu J, Xiao P, Li H, Carabineiro SAC. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 2014;6:16449-16465. https://doi.org/10.1021/am502925j
- Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000;97:9226-9233. https://doi.org/10.1073/pnas.97.16.9226
- Yang K, Wan J, Zhang S, Zhang Y, Lee S-T, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2010;5:516-522.
- Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C 2014;45:196-204. https://doi.org/10.1016/j.msec.2014.09.019
- Jang SC, Kang S, Lee JY, Oh SY, Vilian ATE, Lee I, Han Y, Park JH, Cho WS, Roh C, Huh YS. Nano-graphene oxide composite for in vivo imaging. Int J Nanomedicine 2018;13:221-234. https://doi.org/10.2147/IJN.S148211
-
Hong H, Zhang Y, Engle JW, Nayak TR, Theuer CP, Nickles RJ, Barnhart TE, Cai W. In vivo targeting and positron emission tomography imaging of tumor vasculature with
$^{66}Ga$ -labeled nano-graphene. Biomaterials 2012;33:4147-4156. https://doi.org/10.1016/j.biomaterials.2012.02.031 - Hong H, Yang K, Zhang Y, Engle JW, Feng L, Yang Y, Nayak TR, Goel S, Bean J, Theuer CP, Barnhart TE, Liu Z, Cai W. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano 2012;6:2361-2370. https://doi.org/10.1021/nn204625e
- Cornelissen B, Able S, Kersemans V, Waghorn PA, Myhra S, Jurkshat K, Crossley A, Vallis KA. Nanographene oxide-based radioimmunoconstructs for in vivo targeting and SPECT imaging of HER2-positive tumors. Biomaterials 2013;34:1146-1154. https://doi.org/10.1016/j.biomaterials.2012.10.054
- Zhan Y, Liu Z, Liu Q, Huang D, Wei Y, Hu Y, Lian X. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem 2017;41:3930-3938. https://doi.org/10.1039/C7NJ00058H
- Zhang X, Wang H, Wang H, Zhang Q, Xie J, Tian Y, Wang J, Xie Y. Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv Mater 2014;26: 4438-4443. https://doi.org/10.1002/adma.201400111
- Oh J, Yoo RJ, Kim SY, Lee YJ, Kim DW, Park S. Oxidized carbon nitrides: water-dispersible, atomically thin carbon nitride-based nanodots and their performances as bioimaging probes. Chem Eur J 2015;21:6241-6246. https://doi.org/10.1002/chem.201406151
- Kim JK, Park S, Yoo RJ, et al. Thin PEGylated carbon nitrides: water-dispersible organic nanodots as bioimaging probes. Chem Eur J 2018;24:3506-3511. https://doi.org/10.1002/chem.201704761
- Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J Am Chem Soc 2012;135:18-21.