DOI QR코드

DOI QR Code

Phylogenetic relationships of Coreanomecon (Papaveraceae: Papaveroideae), an endemic genus in Korea, using DNA sequences

  • YUN, Narae (Department of Biology, Daejeon University) ;
  • OH, Sang-Hun (Department of Biology, Daejeon University)
  • Received : 2018.11.11
  • Accepted : 2018.12.28
  • Published : 2018.12.30

Abstract

Coreanomecon is a monotypic and endemic genus in Korea, distributed mainly in the southern regions. Coreanomecon is morphologically similar to Hylomecon by producing red latex, easily distinguished from Chelidonium, which produces yellow latex. Coreanomecon were merged into Hylomecon or Chelidonium depending on the authors. To understand the phylogenetic relationship of Coreanomecon, DNA sequences of chloroplast rbcL and matK and nuclear Internal Transcribed Spacer (ITS) regions were determined from the species of Papaveroideae (Papaveraceae) in Korea and analyzed with the Maximum Parsimony and Bayesian methods. Phylogenetic analyses of Papaveroideae suggest that Coreanomecon is sister to the clade of Chelidonium and Stylophorum in the ITS data and that it is sister to Hylomecon in the chloroplast (cpDNA) data. A constraining analysis using the Shimodaira-Hasegawa test (S-H test) suggested that the ITS data do not reject the sister relationship of Coreanomecon and Hylomecon. The S-H test also suggested that the cpDNA data is compatible with the placement of Coreanomecon as a sister to the clade of Chelidonium and Stylophorum. Although the conflicting phylogenetic results may stem from insufficient phylogenetic signals, they may also be associated with hybridization between Hylomecon and an ancestor of Stylophorum and Chelidonium. The results of this study suggest that Coreanomecon is a distinct lineage as an endemic genus, supporting the morphological data.

Keywords

References

  1. Carolan, J. C., I. L. I. Hook, M. W. Chase, J. W. Kadereit and T. R. Hodkinson. 2006. Phylogenetics of Papaver and related genera based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. Annals of Botany 98: 141-155. https://doi.org/10.1093/aob/mcl079
  2. CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106: 12794-12797. https://doi.org/10.1073/pnas.0905845106
  3. Chung, G. Y., K. S. Chang, J.-M. Chung, H. J. Choi, W.-K. Paik and J.-O. Hyun 2017. A checklist of endemic plants on the Korean Peninsula. Korean Journal of Plant Taxonomy 47: 264-288. https://doi.org/10.11110/kjpt.2017.47.3.264
  4. Cronquist, A. 1988. The Evolution and Classification of Flowering Plants. The New York Botanical Garden, Bronx, NY, 555 pp.
  5. Cuenoud, P., V. Savolainen, L. W. Chatrou, M. P. Powell, R. J. Grayer and M. W. Chase. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132-144. https://doi.org/10.3732/ajb.89.1.132
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  7. Hannan, G. L. and C. Clark. 2011. Papaveraceae. In The Jepson Manual Higher Plants of California II, second edition. Baldwin, B. G., S. Boyd, B. J. Ertter, D. J. Keil, R. W. Patterson, T. J. Rosatti, and D. Wilken (eds.), University of California Press, Berkeley, CA. Pp. 978-986.
  8. Hebert, P. D. N., A. Cywinska, S. L. Ball and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313-321. https://doi.org/10.1098/rspb.2002.2218
  9. Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812-14817. https://doi.org/10.1073/pnas.0406166101
  10. Hoot, S. B., J. W. Kadereit, F. R. Blattner, K. B. Jork, A. E. Schwarzbach and P. R. Crane. 1997. Data congruence and phylogeny of the Papaveraceae s. l. based on four data sets: atpB and rbcL sequences, trnK restriction sites, and morphological characters. Systematic Botany 22: 575-590. https://doi.org/10.2307/2419829
  11. Hoot, S. B., K. M. Wefferling and J. A. Wulff. 2015. Phylogeny and character evolution of Papaveraceae s. l. (Ranunculales). Systematic Botany 40: 474-488. https://doi.org/10.1600/036364415X688718
  12. Huelsenbeck, J. P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  13. Kadereit, J. W. 1988. Sectional affinities and geographical distribution in the genus Papaver L. (Papaveraceae). Beitrarage zur Biologie der Pflanzen 63: 139-156.
  14. Kadereit, J. W. 1993. A revision of Papaver sect. Meconidium. Edinburgh Journal of Botany 50: 125-148. https://doi.org/10.1017/S0960428600002523
  15. Kim, H. M., S.-H. Oh, G, S. Bhandari, C.-S. Kim and C.-W. Park. 2014. DNA barcoding of Orchidaceae in Korea. Molecular Ecology Resources 14: 499-507. https://doi.org/10.1111/1755-0998.12207
  16. Kim, M. 2007. Papaveraceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 216-220.
  17. Kim, M., S.-Y. Kwon and K.-R. Park. 1999. Reexamination the generic status of the Korean endemic Coreanomecon within subfamily Chelidonioideae (Papaveraceae). Korean Journal of Plant Taxonomy 29: 295-305. https://doi.org/10.11110/kjpt.1999.29.4.295
  18. Kress, W. J. and D. L. Erickson. 2007. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2: e508. https://doi.org/10.1371/journal.pone.0000508
  19. Kress, W. J., K. J. Wurdack, E. A. Zimmer, L. A. Weigt and D. H. Janzen. 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369-8374. https://doi.org/10.1073/pnas.0503123102
  20. Lahaye, R, M. van der Bank, D. Bogarin, J. Warner, F. Pupulin, G. Gigot, O. Maurin, S. Duthoit, T. G. Barraclough and V. Savolainen. 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America 105: 2923-2928. https://doi.org/10.1073/pnas.0709936105
  21. Lee, E. J., I. K. Hwang, N. Y. Km, K. L. Lee, M. S. Han, Y. H. Lee, M. Y. Kim and M. S. Yang. 2010. An assessment of the utility of universal and specific genetic markers for opium poppy identification. Journal of Forensic Sciences 55: 1202-1208. https://doi.org/10.1111/j.1556-4029.2010.01423.x
  22. Lee, S. and M. Y. Kim. 1984. A palynotaxonomic study of Coreanomecon hylomecoides Nakai (Papaveraceae) and its closely related species. Korean Journal of Plant Taxonomy 14: 181-186. https://doi.org/10.11110/kjpt.1984.14.3.181
  23. Lee, Y. N. 1973. Taxonomic study on genus Hylomecon. Journal of Korean Research Institute of Better Living 11: 127-136. (in Korean)
  24. Lee, T. B. 1980. Illustrated Flora of Korea. Hyangmunsa, Seoul, 990 pp.
  25. Mabberley, D. J. 2008. Mabberley's Plant-Book: A Portable Dictionary of the Vascular Plants. 2nd ed. Cambridge University Press, Cambridge, NY, 858 pp.
  26. Nakai, T. 1935. Coreanomecon hylomecoides Nakai. Journal of Japanese Botany 11: 151-152.
  27. Ohwi, J. 1965. Flora of Japan. Smithsonian Institution, Washington, D.C., 1067 pp.
  28. Park, M. K. 1974. Keys to the Herbaceous Plants in Korea. Chungeumsa, Seoul, 593 pp.
  29. Posada, D. and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford) 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  30. Randel U. 1974. Beitrage zur Kenntnis der Sippenstruktuir der Gattung Papaver L. Sectio Scapiflora Reihenb. Im vergleich mit P. alpinum L. (Papaveraceae). Feddes Repert 86: 19-37.
  31. Rieseberg, L. H. and N. C. Ellstrand. 1993. What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12: 213-241.
  32. Rieseberg, L. H., S. J. Baird and K. A. Gardner. 2000. Hybridization, introgression, and linkage evolution. Plant Molecular Biology 42: 205-224. https://doi.org/10.1023/A:1006340407546
  33. Sang, T., D. J. Crawford and T. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136. https://doi.org/10.2307/2446155
  34. Simpson, M. G. 2010. Plant Systematics. 2nd ed. Elsevier, Amsterdam, 740 pp.
  35. Soltis, P. S., D. E. Soltis and C. J. Smiley. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences of the United States of America 89: 449-451. https://doi.org/10.1073/pnas.89.1.449
  36. Son, S.-W., J.-M. Chung, J.-K. Shin, B.-C. Lee, K.-W. Park and S. J. Park. 2012. Distribution, vegetation characteristics and assessment of the conservation status of a rare and endemic plant, Coreanomecon hylomeconoides Nakai. Korean Journal of Plant Taxonomy 42: 116-125. https://doi.org/10.11110/kjpt.2012.42.2.116
  37. Swofford, D. L. 2002. PAUP* Phylogenetic analysis using parsimony (* and other methods), version 4.0. Sinauer Associates, Sunderland, MA.
  38. Takhtajan, A. 1997. Diversity and Classification of Flowering Plants. Columbia University Press, New York, 643 pp.
  39. The Angiosperm Phylogeny Group. 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399-436. https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x
  40. The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121. https://doi.org/10.1111/j.1095-8339.2009.00996.x
  41. The Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181: 1-20. https://doi.org/10.1111/boj.12385
  42. Thorne, R. F. 1992. Classification and geography of the flowering plants. Botanical Review 58: 225-348. https://doi.org/10.1007/BF02858611
  43. Tripathi, A. M., A. Tyagi, A. Kumar, A. Singh, S. Singh, L. B. Chaudhary and S. Roy. 2013. The internal transcribed spacer (ITS) region and trnH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS ONE 8: e57934. https://doi.org/10.1371/journal.pone.0057934
  44. Wang, W., A.-M. Lu, Y. Ren, M. E. Endress and Z.-D. Chen. 2009. Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics 11: 81-110. https://doi.org/10.1016/j.ppees.2009.01.001
  45. Xiang, X.-G., H. Hu, W. Wang and X.-H. Jin. 2011. DNA barcoding of the recently evolved genus Holcoglossum (Orchidaceae: Aeridinae): a test of DNA barcode candidates. Molecular Ecology Resources 11: 1012-1021. https://doi.org/10.1111/j.1755-0998.2011.03044.x
  46. Youm, J. W., S.-W. Han, S. W. Seo, C. U. Lim and S.-H. Oh. 2016. DNA barcoding of Schisandraceae in Korea. Korean Journal of Plant Taxonomy 46: 273-282. https://doi.org/10.11110/kjpt.2016.46.3.273
  47. Zhang, M., Z. Su, M. Liden and C. Grey-Wilson. 2008. Papaveraceae. In Flora of China. Vol. 7. Menispermaceae through Capparaceae. Wu, Z. Y., P. H. Raven and D. Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 261-293.
  48. Zhang, Q., Y. Liu and Sodmergen. 2003. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant and Cell Physiology 44: 941-951. https://doi.org/10.1093/pcp/pcg121

Cited by

  1. The complete plastome of bloodroot ( Sanguinaria canadensis , Papaveraceae), a spring ephemeral from eastern North America vol.4, pp.2, 2018, https://doi.org/10.1080/23802359.2019.1662747
  2. Phylogenetic relationships of Coreanomecon (Papaveraceae: Chelidonioideae) inferred from seed morphology and nrITS sequence data vol.37, pp.8, 2019, https://doi.org/10.1111/njb.02275