DOI QR코드

DOI QR Code

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Lee, Youn-Jung (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Balaji, Nagarajan (Department of Energy Science, Sungkyunkwan University) ;
  • Cho, Young Hyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2018.02.02
  • 심사 : 2018.03.21
  • 발행 : 2018.03.31

초록

Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

키워드

참고문헌

  1. X. Gu, X. Yun, K. Guo, L. Chen, D. Wang, D. Yang, "Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 101, pp. 95-101, 2012. https://doi.org/10.1016/j.solmat.2012.02.024
  2. C. Park, J. Cho, Y. Lee, J. Park, M. Ju, Y-J Lee, J Yi, "Technology trends and prospects of silicon solar cells", Current Photovoltaic research, Vol. 1, No. 1, pp. 11-16, 2013. https://doi.org/10.21218/CPR.2013.1.1.011
  3. Fraunhofer Institute for Solar Energy Systems, ISE, "Photovoltaics Report", 2015.
  4. V. Benda, "Crystalline silicon cells and modules in present photovoltaics", Journal of Engineering Science and Technology Review, Vol. 7, No. 2, pp. 7-15. 2014.
  5. PHOTON Consulting, LLC, "The true cost of solar power, how low can you go?", 2010.
  6. A. Goodrich, P. Hacke, Q. Wang, B. Sopori, R. Margolis, T. L. James, M. Woodhouse, "A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs", Solar Energy Materials and Solar Cells Vol. 114, pp. 110-135, 2013. https://doi.org/10.1016/j.solmat.2013.01.030
  7. H. Wu, "Wire sawing technology: A state-of-the-art review", Precision engineering, Vol. 43, pp. 1-9, 2016.
  8. F. Cao, K. Chen, J. Zhang, X. Ye, J. Li, S. Zou, X. Su, "Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency", Solar Energy Materials and Solar cells, Vol. 141, pp. 132-138, 2015. https://doi.org/10.1016/j.solmat.2015.05.030
  9. B. Meinel, T. Koschwitz, J. Acker, "Textural development of SiC and diamond wire sawed sc-silicon wafer", Energy Procedia, Vol. 27, pp. 330-336, 2012. https://doi.org/10.1016/j.egypro.2012.07.072
  10. M. Steinert, J. Acker, A. Henbge, K. Wetzig, "Experimental studies on the mechanism of wet chemical etching of silicon in HF/$HNO_3$ mixtures", Journal of The Electrochemical Society, Vol. 152 No. 12, pp. C843-C850, 2005. https://doi.org/10.1149/1.2116727
  11. M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, "Reactive Species Generated during Wet Chemical Etching of Silicon in HF/HNO3 Mixtures", Journal of Physical Chemistry B, Vol. 110, pp. 11377-11382, 2006.
  12. D. J. Monk, D. S. Soane, R. T. Howe, "A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications,", Thin Solid Films, Vol. 232, pp. 1-12, 1993. https://doi.org/10.1016/0040-6090(93)90752-B
  13. G. W. Trucks, K. Raghavachari, G. S. Higashi, Y. J. Chabal, "Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation", Physical Review Letters, Vol. 65, No. 4, pp. 504-507. https://doi.org/10.1103/PhysRevLett.65.504
  14. H. Robbins, B. Schwartz, "Chemical etching of silicon", Journal of the electrochemical society, Vol. 106, No. 6, pp. 505-508, 1959. https://doi.org/10.1149/1.2427397
  15. H. Robbins, B. Schwartz, "Chemical etching of silicon", Journal of the electrochemical society, Vol. 107, No. 2, pp. 108-111. https://doi.org/10.1149/1.2427617
  16. K. Chen, Y. Liu, X. Wang, L. Zhang, X. Su, "Novel texturing process for diamond-wire-sawn single-crystalline silicon solar cell", Solar Energy Materials and Solar Cells, Vol. 133, pp. 148-155, 2015. https://doi.org/10.1016/j.solmat.2014.11.016
  17. J. Zhao, A. Wang, F. Ferrazza, M. A. Green, "19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells", Applied Physics Letters, Vol. 73, No. 14, pp. 1991-1993, 1998. https://doi.org/10.1063/1.122345
  18. A. Volk, N. Tucher, J. Seiffe, H. Hauser, M. Zimmer, B. Blasi, M. Hofmann, J. Rentsch, "Honeycomb structure on multi-crystalline silicon Al-BSF solar cell with 17.8% efficiency", Ieee Journal Of Photovoltaics, Vol. 5, No. 4, pp. 1027-1033, 2015. https://doi.org/10.1109/JPHOTOV.2015.2402757
  19. C. Gerhards, C. Marckmann, R. Tolle, M. Spiegel, P. Fath, G. Willeke, E. Bucher, J. Creager, S. Narayanan, "Mechanically V-textured low cost multicrystalline silicon solar cells with a novel printing metallization", Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE Date Sept. 29 1997-Oct. 3 1997.
  20. M. Abbott, J. Cotter, "Optical and electrical properties of laser texturing for high effciency solar cells", Progress in Photovoltaics: Research and Applications, Vol. 14, pp. 225-235, 2006. https://doi.org/10.1002/pip.667
  21. L. A. Dobrazanski, A. Drygala, "Surface texturing of multi-crystalline silicon solar cells", Journal of Achievements in Materials and Manufacturing engineering, Vol. 31, pp. 77-82, 2008.
  22. P. Choi, J. Kim, M. Kim, J. Cho, D. Baek, S. Kim, B. Choi, "Enhanced efficiency of multicrystalline silicon solar cells made via UV laser texturing", Journal of the Korean Physical Society, Vol. 67, No. 6, pp. 991-994, 2015. https://doi.org/10.3938/jkps.67.991
  23. E. Lohmuller, B. Thadigsmann, J. Bartsch, C. Harmel, J. Specht, A. Wolf, F. Clement, M. Horteis, D. Biro, "Advanced metallization of rear surface passivated metal wrap through silicon solar cells", Energy Procedia, Vol. 8, pp. 546-551, 2011. https://doi.org/10.1016/j.egypro.2011.06.180
  24. W. Neu, A. Kress, W. Jooss, P. Fath, E. Bucher, "Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization", Solar Energy Materials & Solar Cells Vol.74, pp. 139-146, 2002. https://doi.org/10.1016/S0927-0248(02)00058-2
  25. M. M. Hilali, J. M. Gee, P. Hacke, "Bow in screen-printed back-contact industrial silicon solar cells", Solar Energy Materials & Solar Cells, Vol. 91, pp. 1228-1233, 2007. https://doi.org/10.1016/j.solmat.2007.04.010
  26. S. Gatz, K. Bothe, J. Muller, T. Dullweber, R. Brendel, "Analysis of local Al-doped back surface fields for high efficiency screen-printed solar cells", Energy Procedia Vol. 8, pp. 318-323, 2011. https://doi.org/10.1016/j.egypro.2011.06.143
  27. H. Savin, P. Repo, G. Gastrow, P. Ortega, E. Calle, M. Garin, R. Alcubilla, "Black silicon solar cells with interdigitated backcontacts achieve 22.1% efficiency", Nature Nanotechnology, Vol. 10, pp. 624-629, 2015. https://doi.org/10.1038/nnano.2015.89
  28. K. Fukui, Y. Inomata, K. Shirasawa, "Surface texturing using reactive ion etching for multicrystalline silicon solar cells", Photovoltaic Specialists Conference, 1997., Conference Record of the Twenty-Sixth IEEE Date Sept. 29 1997-Oct. 3 1997.
  29. M. S. Yun, D. H. Hyun, B. J. Jin, J. Y. Choi, J. S. Kim, H. D. Kang, J. Yi, G. C. Kwon, "Study of low reflectance and RF frequency by rie surface texture process in multi crystal silicon solar cells", Journal of the Korean Vacuum Society Vol. 19, pp. 114-120, 2010.
  30. W. Chen, H. Lin, F. C. Hong, "Improvement of conversion effi ciency of multi-crystalline silicon solar cells using reactive ion etching with surface pre-etching", Thin Solid Films Vol. 597, pp. 50-56, 2015. https://doi.org/10.1016/j.tsf.2015.10.056
  31. P. Feng, G. Liu, W. Wu, Y. Shi, Q. Wan, "Improving the blue response and efficiency of multicrystalline silicon solar cells by surface nanotexturing", IEEE Electron Device Letters, Vol. 37, pp. 306-309, 2016. https://doi.org/10.1109/LED.2016.2518690
  32. B. Kafle, J. Seiffe, M. Hofmann, L. Clochard, E. Duffy, J. Rentsch, "Nanostructuring of c-Si surface by F2-based atmospheric pressure dry texturing process applications and materials science", Phys. Status Solidi A, Vol. 212, No. 2, pp. 307-311, 2015. https://doi.org/10.1002/pssa.201431372
  33. B. Kafle, A. Mannan, T. Freund, L. Clochard, E. Duffy, J. Rentsch, M. Hofmann, Ralf Preu, "Nanotextured multicrystalline Al-BSF solar cells reaching 18% conversion efficiency using industrially viable solar cell processes", Phys. Status Solidi RRL, Vol. 9, No. 8, pp. 448-452, 2015.
  34. Michael J. Sailor, Porous Silicon in Practice: Preparation, Characterization and Applications, 2012 Wiley-VCH Verlag GmbH & Co. KGaA.
  35. R. R. Bilyalov, R. LuKdemann, W. Wettling, L. Stalmans, J. Poortmans, J. Nijs, L. Schirone, G. Sotgiu, S. Strehlke, C. Levy-Clement, "Multicrystalline silicon solar cells with porous silicon emitter", Solar Energy Materials & Solar Cells, Vol. 60, pp. 391-420, 2000. https://doi.org/10.1016/S0927-0248(99)00102-6
  36. C. Pacholski, "Photonic crystal sensors based on porous silicon", Sensors, Vol. 13, pp. 4694-4713, 2013. https://doi.org/10.3390/s130404694
  37. B. Bhushan (ed.), Encyclopedia of Nanotechnology, DOI 10.1007/978-90-481-9751-4.
  38. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, P. Panek, "Cost-effective methods of texturing for silicon solar cells", Solar Energy Materials & Solar Cells Vol. 72, pp. 291-298, 2002. https://doi.org/10.1016/S0927-0248(01)00177-5
  39. Z. Huang, N. Geyer, P. Werner, J. Boor, U. Gosele, "Metal-Assisted Chemical Etching of Silicon: A Review", Advanced Materials, Vol. 23, pp. 285-308, 2011. https://doi.org/10.1002/adma.201001784
  40. J. Oh, H. Yuan, H. M. Branz, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures", Nature Nanotechnology, Vol. 7, pp. 743-748, 2012. https://doi.org/10.1038/nnano.2012.166
  41. S. K. Srivastava, P. Singh, M. Yameen, P. Prathap, C. M. S. Rauthan, Vandana, P. K. Singh, "Antireflective ultra-fast nanoscale texturing for efficient multi-crystalline silicon solar cells", Solar Energy Vol. 115, pp. 656-666, 2015. https://doi.org/10.1016/j.solener.2015.03.010
  42. Z. G. Huang, X. X. Lin, Y. Zeng, S. H. Zhong, X. M. Song, C. Liu, X. Yuan, W. Z. Shen, "One-step-MACE nano/microstructures for high-efficient large-size multicrystalline Si solar cells", Solar Energy Materials & Solar Cells, Vol. 143, pp. 302-310, 2015. https://doi.org/10.1016/j.solmat.2015.07.017
  43. M. B. Rabha, M. Saadoun, M. F. Boujmil, B. Bessai, H. Ezzaouia, R. Bennaceur, "Application of the chemical vapor-etching inpolycrystalline silicon solar cells", Applied Surface Science Vol. 252, pp. 488-493, 2005. https://doi.org/10.1016/j.apsusc.2005.01.028
  44. M. Saadoun, N. Mliki, H. Kaabi, K. Daoudi, B. Bessais, H. Ezzaouia, R. Bennaceur, "Vapour-etching-based porous silicon: a new approach", Thin Solid Films, Vol. 405, pp. 29-34, 2002. https://doi.org/10.1016/S0040-6090(01)01757-6
  45. M. Ju, M. Gunasekaran, K. Kim, K. Han, I. Moon, K. Lee, S. Han, T. Kwon, D. Kyung, J. Yi, "A new vapor texturing method for multicrystalline silicon solar cell applications", Materials Science and Engineering B, Vol. 153, pp. 66-69, 2008. https://doi.org/10.1016/j.mseb.2008.10.030