DOI QR코드

DOI QR Code

Review of Entropy Wave in a Gas Turbine Combustor

가스터빈 연소기에서 엔트로피파에 대한 고찰

  • Kim, Daesik (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University) ;
  • Yoon, Myunggon (School of Mechanical and Automotive Engineering, Gangneung-Wonju National University)
  • 김대식 (강릉원주대학교 기계자동차공학부) ;
  • 윤명곤 (강릉원주대학교 기계자동차공학부)
  • Received : 2017.08.08
  • Accepted : 2018.03.05
  • Published : 2018.03.30

Abstract

Entropy waves(or hot spots) in a gas turbine combustor are generated by irregular heat release from flames, then can be coupled with acoustic waves when they are accelerated at the exit of the combustor. This coupling mechanism between the entropy and the acoustic waves is generally known to be one of the triggers for combustion instability, which is commonly called "indirect" combustion noise. This paper reviews the fundamental theories on generation, propagation, and coupling with acoustic field of entropy waves and recent research results on the indirect combustion noise for gas turbine combustors.

Keywords

References

  1. K.T. Kim, J.G. Lee, B.D. Quay, D.A. Santavicca, Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustor, Combust. Flame, 157(9) (2010) 1718-1730. https://doi.org/10.1016/j.combustflame.2010.04.016
  2. D.S. Kim, Linear Stability Analysis in a Gas Turbine Combustor Using Thermoacoustic Models, J. Korean Soc. Combust., 17(2) (2012) 17-23.
  3. D.S. Kim, S.R. Kim, K.T. Kim, Thermoacoustic Analysis Considering Flame Location in a Gas Turbine Combustor, J. Korean Soc. Combust., 18(1) (2013) 1-6. https://doi.org/10.15231/JKSC.2013.18.1.001
  4. J.A. Kim, D.S. Kim, Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor, J. ILASS-Korea, 20(4) (2015) 241-246. https://doi.org/10.15435/JILASSKR.2015.20.4.241
  5. J.A Kim, M.G. Yoon, D.S. Kim, Combustion Stability Analysis Using Feedback Transfer Function, J. Korean Soc. Combust., 21(3) (2016) 1-10. https://doi.org/10.15231/JKSC.2016.21.3.001
  6. B.T. Chu, L.S.G. Kovasznay, Non-Linear Interactions in a Viscous Heat-Conducting Compressible Gas, J. Fluid Mech., 3(5) (1958) 494-514. https://doi.org/10.1017/S0022112058000148
  7. F.E. Marble, S.M. Candel, Acoustic Disturbance from Gas Non-Uniformities Convected through a Nozzle, J. Sound Vib., 55(2) (1977) 225-243. https://doi.org/10.1016/0022-460X(77)90596-X
  8. T. Sattelmayer, Influence of the Combustor Aerodynamics on Combustion Instabilities from Equivalence Ratio Fluctuations, J. Eng. Gas Turb. Power, 125(1) (2003) 11-19. https://doi.org/10.1115/1.1365159
  9. J. Eckstein, T. Sattelmayer, Low-Order Modeling of Low-Frequency Combustion Instabilities in Aeroengines, J. Propul. Power, 22(2) (2006) 425-432. https://doi.org/10.2514/1.15757
  10. E. Motheau, L. Selle, F. Nicoud, Accounting for Convective Effects in Zero Mach Number Thermoacoustic Models, J. Sound Vib., 333(1) (2014) 246-262. https://doi.org/10.1016/j.jsv.2013.08.046
  11. N. Karimi, M.J. Brear, W.H. Moase, Acoustic and Disturbance Energy Analysis of a Flow with Heat Communication, J. Fluid Mech., 597 (2008) 67-89. https://doi.org/10.1017/S0022112007009573
  12. K. Wieczorek, Numerical Study of Mach Number Effects on Combustion Instability, Ph.D. Thesis, University of Montpellier, Montpellier, 2010.
  13. Y.C. Yu, J.C. Sisco, V. Sankaran, W.E. Anderson, Effects of Mean Flow, Entropy Waves, and Boundary Conditions on Longitudinal Combustion Instability, Combust. Sci. Technol., 182(7) (2010), 739-776. https://doi.org/10.1080/00102200903566449
  14. A.S. Morgans, I. Duran, Entropy noise: a Review of Theory, Progress and Challenges, Int. J. Spray Combust., 8(4) (2016) 1-14.
  15. A.P. Dowling and Y. Mahmoudi, Combustion Noise, Proceedings of the Combustion Institute, 35, 2015, 65-100.
  16. J.S. Hong, H.J. Moon, H.G. Sung, W.S. Um, S.H. Seo, D.H. Lee, The Nonlinear Combustion Instability Prediction of Solid Rocket Motors, J. Korean Soc. Propul. Eng., 20(1) (2016) 20-27. https://doi.org/10.6108/KSPE.2016.20.1.020
  17. H.J. Kim, S.K. Kim, Case Study on Combustion Stabilization in FASTRAC Thrust Chamber Using Acoustic Cavities, J. Korean Soc. Propul. Eng., 16(5) (2012) 29-36. https://doi.org/10.6108/KSPE.2012.16.5.029
  18. D.J. Cha, J.K. Song, J.G. Lee, A Case Study on Combustion Instability of a Model Lean Premixed Gas Turbine Combustor with Open Source Code OSCILOS, J. Korean Soc. Combust., 20(4) (2015) 10-18. https://doi.org/10.15231/jksc.2015.20.4.010
  19. Y.J. Shin, S.T. Jeon, Y.M. Kim, Combustion Instability Analysis of LIMOUSINE Burner Using LES-Based Combustion Model and Helmholtz Equation, J. Korean Soc. Combust., 22(3) (2017) 41-46. https://doi.org/10.15231/JKSC.2017.22.3.041
  20. J.W. Son, C.H. Sohn, J.S. Yoon, Y.B. Yoon, Evaluation of Combustion Instability in a Model Gas Turbine Adopting Flame Transfer Function and Dynamic Mode Decomposition, J. Korean Soc. Combust., 22(2) (2017) 1-8. https://doi.org/10.15231/JKSC.2017.22.2.001
  21. M.S. Jang, K.M. Lee, A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor, J. Korean Soc. Combust., 21(2) (2016) 29-37. https://doi.org/10.15231/jksc.2016.21.2.029
  22. A.P. Dowling, The Calculation of Thermoacoustic Oscillations, J. Sound Vib., 180(4) (1995) 557-581. https://doi.org/10.1006/jsvi.1995.0100
  23. I. Duran, S. Moreau, Solution of the Quasi-one-dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion, J. Fluid Mech., 723 (2013) 190-231. https://doi.org/10.1017/jfm.2013.118
  24. F. Bake, C. Richter, B. Muhlbauer, N. Kings, I. Rohle, F. Thiele, B. Noll, The Entropy Wave Generator (EWG) : a Reference Case on Entropy Noise, J. Sound Vib., 326(3-5) (2009) 574-598. https://doi.org/10.1016/j.jsv.2009.05.018
  25. H.C. Mongia, T.J. Held, G.C. Hsiao, R.P. Pandalai, Challenges and Progress in Controlling Dynamics in Gas Turbine Combustors, J. Propul. Power, 19(5) (2003) 822-829. https://doi.org/10.2514/2.6197
  26. T.C. Lieuwen, V. Yang, Combustion Instabilities in Gas Turbine Engines: operational experience, fundamental mechanisms, and modeling, Progress in Astronautics and Aeronautics, 210, 2005.
  27. A.H. Lefebvre, D. Ballal, Gas Turbine Combustion, CRC Press, Boca Raton, 2010.
  28. Y. Liu, A.P. Dowling, N. Swaminathan, R. Morvant, M.A. Macquisten, L. Caracciolo, Prediction of Combustion Noise for an Aeroengine Combustor, J. Propul. Power, 30(1) (2014) 114-122. https://doi.org/10.2514/1.B34857
  29. J.E. Temme, P.M. Allison, J.F. Driscoll, Combustion Instability of a Lean Premixed Prevaporized Gas Turbine Combustor Studied Using Phase-Averaged PIV, Combust. Flame, 161(4) (2014) 958-970. https://doi.org/10.1016/j.combustflame.2013.09.021
  30. J. O'Connor, V. Acharya, T. Lieuwen, Transverse Combustion Instabilities: Acoustic, Fluid Mechanic, and Flame Processes, Prog. Energy Combust. Sci., 49 (2015) 1-39. https://doi.org/10.1016/j.pecs.2015.01.001
  31. C.S. Goh, A.S. Morgans, The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor, Combust. Sci. Technol., 185(2) (2013) 249-268. https://doi.org/10.1080/00102202.2012.715828
  32. A.S. Morgans, C.S. Goh, J.A. Dahan, The Dissipation and Shear Dispersion of Entropy Waves in Combustor Thermoacoustics, J. Fluid Mech., 733 (2013) R2 1-11. https://doi.org/10.1017/jfm.2013.448
  33. J. Apeloig, F. Herbigny, F. Simon, P. Gajan, M. Orain, S. Roux, Liquid-Fuel Behavior in an Aeronautical Injector Submitted to Thermoacoustic Instabilities, J. Propul. Power, 31(1) (2015) 309-319. https://doi.org/10.2514/1.B35290
  34. J.C. Oefelein, V. Yang, Comprehensive Review of Liquid-Propellant Combustion Instabilities in F-1 Engines, J. Propul. Power, 9(5) (1993) 657-667. https://doi.org/10.2514/3.23674
  35. S. Tachibana, K. Saito, T. Yamamoto, M. Makida, T. Kitano, R. Kurose, Experimental and Numerical Investigation of Thermo-Acoustic Instability in a Liquid-Fuel Aero-Engine Combustor at Elevated Pressure: Validity of Large-Eddy Simulation of Spray Combustion, Combust. Flame, 162(6) (2015) 2621-2637. https://doi.org/10.1016/j.combustflame.2015.03.014
  36. A.R. Karagozian, Acoustically Coupled Combustion of Liquid Fuel Droplets, Appl. Mech. Rev., 68(4) (2016) 040801. https://doi.org/10.1115/1.4033792