DOI QR코드

DOI QR Code

COMPARISON OF THE LEE AND HOMOGENOUS WEIGHTS OVER A FAMILY OF CHAIN RINGS

  • Received : 2017.03.07
  • Accepted : 2017.09.14
  • Published : 2018.03.31

Abstract

We compare the Lee and homogenous weights over the chain ring $S_{q,m}={\mathbb{F}}_q[u]/(u^m)$ by computing the minimum distance of random codes for small values of n, q, m.

Keywords

References

  1. G. Andrews, A. Klein, and M. J. Strauss, Groups, Algebras, and Applications, Pages 4-5, Library of Congress Cataloging-in-Publication Data, 18, 2009.
  2. W. Bosma and J. Cannon, Handbook of Magma Functions, Sydney, 1995.
  3. I. Constantinescu and W. Heise, A metric for codes over residue class rings of integers, Transmission 33 (1997), no. 3, 208-213 (1998); translated from Problemy Peredachi Informatsii 33 (1997), no. 3, 22-28.
  4. S. T. Dougherty, S. Karadeniz, and B. Yildiz, Cyclic codes over $R_k$, Des. Codes Cryptogr. 63 (2012), no. 1, 113-126. https://doi.org/10.1007/s10623-011-9539-4
  5. S. T. Dougherty, J.-L. Kim, H. Kulosman, and H. Liu, Self-dual codes over commutative Frobenius rings, Finite Fields Appl. 16 (2010), no. 1, 14-26. https://doi.org/10.1016/j.ffa.2009.11.004
  6. S. T. Dougherty, B. Yildiz, and S. Karadeniz, Codes over $R_k$, Gray maps and their binary images, Finite Fields Appl. 17 (2011), no. 3, 205-219. https://doi.org/10.1016/j.ffa.2010.11.002
  7. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at www.codetables.de.
  8. M. Greferath, G. McGuire, and M. E. O'Sullivan, On Plotkin-optimal codes over finite Frobenius rings, J. Algebra Appl. 5 (2006), no. 6, 799-815. https://doi.org/10.1142/S0219498806002022
  9. M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams' equivalence theorem, J. Combin. Theory Ser. A 92 (2000), no. 1, 17-28. https://doi.org/10.1006/jcta.1999.3033
  10. T. Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406-415. https://doi.org/10.1007/PL00000451
  11. Z. O. Ozger, U. U. Kara, and B. Yildiz, Linear, cyclic and constacyclic codes over $S_{4}\;=\;F_{2}\;+\;u{\mathbb{F}}_{2}\;+\;u^{2}F_{2}\;+\;u^{3}{\mathbb{F}}_{2}$, Filomat 28 (2014), no. 5, 897-906. https://doi.org/10.2298/FIL1405897O
  12. I. Siap, T. Abualrub, and B. Yildiz, One generator quasi-cyclic codes over ${\mathbb{F}}_{2}\;+\;u{\mathbb{F}}_{2}$, J. Franklin Inst. 349 (2012), no. 1, 284-292. https://doi.org/10.1016/j.jfranklin.2011.10.020
  13. N. Tufekci and B. Yildiz, On codes over $R_{k,m}$ and constructions for new binary self-dual codes, Math. Slovaca 66 (2016), no. 6, 1511-1526.
  14. J. A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555-575. https://doi.org/10.1353/ajm.1999.0024
  15. B. Yildiz and S. Karadeniz, Cyclic codes over $F_{2}\;+\;u{\mathbb{F}}_{2}\;+\;uF_{2}\;+\;uv{\mathbb{F}}_{2}$, Des. Codes Cryptogr. 58 (2011), no. 3, 221-234. https://doi.org/10.1007/s10623-010-9399-3
  16. B. Yildiz and I. G. Kelebek, The homogeneous weight for $R_k$, related Gray map and new binary quasi-cyclic codes, Filomat 31 (2017), no. 4, 885-897. https://doi.org/10.2298/FIL1704885Y