DOI QR코드

DOI QR Code

KRULL DIMENSION OF HURWITZ POLYNOMIAL RINGS OVER PRÜFER DOMAINS

  • Le, Thi Ngoc Giau (Faculty of Mathematics and Statistics Ton Duc Thang University) ;
  • Phan, Thanh Toan (Faculty of Mathematics and Statistics Ton Duc Thang University)
  • 투고 : 2017.03.07
  • 심사 : 2017.07.21
  • 발행 : 2018.03.31

초록

Let R be a commutative ring with identity and let R[x] be the collection of polynomials with coefficients in R. There are a lot of multiplications in R[x] such that together with the usual addition, R[x] becomes a ring that contains R as a subring. These multiplications are from a class of functions ${\lambda}$ from ${\mathbb{N}}_0$ to ${\mathbb{N}}$. The trivial case when ${\lambda}(i)=1$ for all i gives the usual polynomial ring. Among nontrivial cases, there is an important one, namely, the case when ${\lambda}(i)=i!$ for all i. For this case, it gives the well-known Hurwitz polynomial ring $R_H[x]$. In this paper, we completely determine the Krull dimension of $R_H[x]$ when R is a $Pr{\ddot{u}}fer$ domain. Let R be a $Pr{\ddot{u}}fer$ domain. We show that dim $R_H[x]={\dim}\;R+1$ if R has characteristic zero and dim $R_H[x]={\dim}\;R$ otherwise.

키워드

참고문헌

  1. A. Benhissi, Ideal structure of Hurwitz series rings, Beitrage Algebra Geom. 48 (2007), no. 1, 251-256.
  2. A. Benhissi, Factorization in Hurwitz series domain, Rend. Circ. Mat. Palermo (2) 60 (2011), no. 1-2, 69-74. https://doi.org/10.1007/s12215-011-0028-4
  3. A. Benhissi, PF and PP-properties in Hurwitz series ring, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 54(102) (2011), no. 3, 203-211.
  4. A. Benhissi, Chain condition on annihilators and strongly Hopfian property in Hurwitz series ring, Algebra Colloq. 21 (2014), no. 4, 635-646. https://doi.org/10.1142/S1005386714000583
  5. A. Benhissi and F. Koja, Basic properties of Hurwitz series rings, Ric. Mat. 61 (2012), no. 2, 255-273. https://doi.org/10.1007/s11587-012-0128-2
  6. S. Bochner and W. T. Martin, Singularities of composite functions in several variables, Ann. of Math. (2) 38 (1937), no. 2, 293-302. https://doi.org/10.2307/1968554
  7. M. Fliess, Sur divers produits de series formelles, Bull. Soc. Math. France 102 (1974), 181-191.
  8. M. Ghanem, Some properties of Hurwitz series ring, Int. Math. Forum 6 (2011), no. 37-40, 1973-1981.
  9. A. Hurwitz, Sur un theoreme de M. Hadamard, C. R. Acad. Sci. 128 (1899), 350-353.
  10. B. G. Kang and P. T. Toan, Krull dimension and unique factorization in Hurwitz polynomial rings, to appear in Rocky Mountain J. Math.
  11. I. Kaplansky, Commutative Rings, Revised edition, The University of Chicago Press, Chicago and London, 1974.
  12. W. F. Keigher, On the ring of Hurwitz series, Comm. Algebra 25 (1997), no. 6, 1845-1859. https://doi.org/10.1080/00927879708825957
  13. W. F. Keigher and F. L. Pritchard, Hurwitz series as formal functions, J. Pure Appl. Algebra 146 (2000), no. 3, 291-304. https://doi.org/10.1016/S0022-4049(98)00099-1
  14. W. F. Keigher and V. R. Srinivasan, Linear differential equations and Hurwitz series, Algebraic Methods in Dynamical Systems, 205-213, Banach Center Publ., 94, Polish Acad. Sci. Inst. Math., Warsaw, 2011.
  15. W. F. Keigher and V. R. Srinivasan, Automorphisms of Hurwitz series, Homology Homotopy Appl. 14 (2012), no. 2, 91-99. https://doi.org/10.4310/HHA.2012.v14.n2.a6
  16. Z. Liu, Hermite and PS-rings of Hurwitz series, Comm. Algebra 28 (2000), no. 1, 299-305. https://doi.org/10.1080/00927870008841073
  17. A. Seidenberg, A note on the dimension theory of rings, Pacific J. Math. 3 (1953), 505-512. https://doi.org/10.2140/pjm.1953.3.505
  18. A. Seidenberg, On the dimension theory of rings II, Pacific J. Math. 4 (1954), 603-614. https://doi.org/10.2140/pjm.1954.4.603
  19. E. J. Taft, Hurwitz invertibility of linearly recursive sequences, Proceedings of the Twentieth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1989), Congr. Numer. 73 (1990), 37-40.