References
- A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: Theory and application to heat transfer model, Thermal Science 20, 763-769, doi:10.2298/tsci160111018a (2016).
- P. Agarwal, M. Jaleli, M. Tomar, Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals, Journal of Inequalities and Applications 2017:55 (2017).
- R. Diaz, E. Pariguan, On hypergeometric functions and Pochhammer k-symbol, Divulg. Mat. 17, 179-192 (2007).
- A. A. Kilbas, M. Saigo, R. K. Saxena, Generalized Mittag-Lefler function and generalized fractional calculus operators, Integral Transforms and Special Functions 15, 31-49, doi:10.1080/10652460310001600717 (2004).
- A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies). (Elsevier Science Inc., 2006).
- V. Kiryakova, Generalized fractional calculus and applications, Vol. 38 (Longman Scientific and Technical, 1994).
- K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, (John Wiley and Sons, 1993).
- D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Mathematics and its Applications, ( Kluwer Academic Publishers Group, 1993).
- K. S. Nisar, G. Rahman, D. Baleanu, S. Mubeen, M. Arshad, The (k, s)-fractional calculus of k-Mittag-Leffer function, Advances in Difference Equations (2017) 2017:118. https://doi.org/10.1186/s13662-017-1176-4
- K. S. Nisar, G. Rahman, J. Choi, S. Mubeen, M. Arshad, Generalized hypergeometric k-functions via (k, s)-fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 17911800.
- S.Mubeen, G. M. Habibullah, k-Fractional Integrals and Application Int. J. Contemp. Math. Sciences 7, 89- 94 (2012).
- S. Mubeen, S. Iqbal, Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals, Journal of Inequalities and Applications 2016:109 (2016). https://doi.org/10.1186/s13660-016-1052-x
- S. D. Purohit, S. L. Kalla, On fractional partial differential equations related to quantum mechanics, Journal of Physics A: Mathematical and Theoretical 44, 045202 (2011). https://doi.org/10.1088/1751-8113/44/4/045202
- T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffer function in the Kernel, Yokohama Math. J., 19(1971), 7-15.
- R.K. Raina, On generalized Wright's hypergeometric functions and fractional calculus operators, East Asian Math. J., 21(2) (2005), 191-203.
- M. Z. Sarikaya, Z. Dahmani, M. E. Kiris, F. Ahmad, (k; s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat. 45, 77-89 (2016).
- H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffer function in the kernel, Applied Mathematics and Computation 211 (2009), 198-210. https://doi.org/10.1016/j.amc.2009.01.055
- A.K. Shukla and J.C. Prajapati, On a generalization of Mittag-Leffer function and its properties, J. Math. Anal. Appl.336(2007), 797-811. https://doi.org/10.1016/j.jmaa.2007.03.018
- M. Tomar, S. Maden, E. Set, (k, s)-Riemann-Liouville fractional integral inequalities for continuous random variables, Arab. J. Math. 6:55-63 (2017). https://doi.org/10.1007/s40065-016-0158-9
- T. Tunc, H. Budak, F. Usta, M. Z. Sarikaya, On new generalized fractional integral operators and related fractional inequalities, ResearchGate, : https://www.researchgate.net/publication/313650587.
-
A. Wiman, Uber den fundamental satz in der theorie der funktionen
$E_{{\alpha}}$ (z), Acta Math. 29, 191-201(1905) https://doi.org/10.1007/BF02403202