DOI QR코드

DOI QR Code

An Exploratory Study of VR Technology using Patents and News Articles

특허와 뉴스 기사를 이용한 가상현실 기술에 관한 탐색적 연구

  • Kim, Sungbum (Department of IT Convergence, Kumoh National Institute of Technology)
  • 김성범 (금오공과대학교 IT융합학과)
  • Received : 2018.08.20
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

The purpose of this study is to derive the core technologies of VR using patent analysis and to explore the direction of social and public interest in VR using news analysis. In Study 1, we derived keywords using the frequency of words in patent texts, and we compared by company, year, and technical classification. Netminer, a network analysis program, was used to analyze the IPC codes of patents. In Study 2, we analyzed news articles using T-LAB program. TF-IDF was used as a keyword selection method and chi-square and association index algorithms were used to extract the words most relevant to VR. Through this study, we confirmed that VR is a fusion technology including optics, head mounted display (HMD), data analysis, electric and electronic technology, and found that optical technology is the central technology among the technologies currently being developed. In addition, through news articles, we found that the society and the public are interested in the formation and growth of VR suppliers and markets, and VR should be developed on the basis of user experience.

이 연구의 목적은 가상현실(VR)의 핵심기술을 특허 분석을 통해서 도출하고 VR에 대한 사회와 대중의 관심을 뉴스 분석을 통해서 탐색하는 것이다. 연구1에서는 특허 텍스트의 단어 출현 빈도를 이용하여 핵심 키워드를 도출하고 업체별, 연도별, 기술 분류별 비교를 하였으며, 네트워크 분석 프로그램인 넷마이너를 사용하여 특허의 IPC 코드를 분석하였다. 연구2에서는 뉴스 기사의 텍스트를 내용분석 도구인 T-LAB 프로그램을 사용하여 분석하였다. 키워드 선정을 위해 TF-IDF를 사용하였고, 카이제곱과 연관지수(Association index) 알고리즘을 사용하여 VR과 관련성이 높은 단어를 추출하였다. 이 연구를 통해 VR 기술이 광학과 머리착용디스플레이(HMD), 데이터 분석, 전기, 전자 기술을 포함하는 융합기술임을 확인하였고, 광학기술이 중심적 기술임을 발견하였다. 뉴스 기사를 통해서는 대중은 VR 공급업체와 시장의 형성과 성장에 관심을 가지며 VR은 사용자 경험에 기초해서 개발되어야 함을 도출하였다.

Keywords

DJTJBT_2018_v16n11_185_f0001.png 이미지

Fig. 1. Analysis of Community (IPC-4 digit)

DJTJBT_2018_v16n11_185_f0002.png 이미지

Fig. 2. VR related News articles

DJTJBT_2018_v16n11_185_f0003.png 이미지

Fig. 3. Deriving the coefficient of associationnij= EC_AB, Nj=EC_A, Ni= EC_B, N= Total EC

Table 1. Number of Articles by Journal (2010~Jan. 2018)

DJTJBT_2018_v16n11_185_t0001.png 이미지

Table 2. Methodology and Analysis

DJTJBT_2018_v16n11_185_t0002.png 이미지

Table 3. Top 20 Keyword by Period

DJTJBT_2018_v16n11_185_t0003.png 이미지

Table 4. Top 20 Keyword by Players

DJTJBT_2018_v16n11_185_t0004.png 이미지

Table 5. Top 20 Keyword by IPC code

DJTJBT_2018_v16n11_185_t0005.png 이미지

Table 6. Analysis of Centrality (IPC- 4 digit)

DJTJBT_2018_v16n11_185_t0006.png 이미지

Table 7. Analysis of Centrality (IPC- 7 digit)

DJTJBT_2018_v16n11_185_t0007.png 이미지

Table 8. IPC Code Description

DJTJBT_2018_v16n11_185_t0008.png 이미지

Table 9. IPC codes and technology sector by Community

DJTJBT_2018_v16n11_185_t0009.png 이미지

Table 10. Keyword selection based on TF-IDF

DJTJBT_2018_v16n11_185_t0010.png 이미지

Table 11. Words associated with VR

DJTJBT_2018_v16n11_185_t0011.png 이미지

References

  1. D. M. Hilty et al. (2006). Virtual reality, telemedicine, web and data processing innovations in medical and psychiatric education and clinical care. Academic Psychiatry, 30(6), 528-533. https://doi.org/10.1176/appi.ap.30.6.528
  2. C. J. Bohil, B. Alicea & F. A. Biocca. (2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12(12).
  3. C. J. Turner, W. Hutabarat, J. Oyekan & A. Tiwari. (2016). Discrete Event Simulation and Virtual Reality Use in Industry: New Opportunities and Future Trends. IEEE Transactions on Human-Machine Systems, 46(6), 882-894. https://doi.org/10.1109/THMS.2016.2596099
  4. M. N. K. Boulos, L. Hetherington & S. Wheeler. (2007). Second Life: an overview of the potential of 3-D virtual worlds in medical and health education. Health Information & Libraries Journal, 24(4), 233-245. https://doi.org/10.1111/j.1471-1842.2007.00733.x
  5. F. Lin & W. Ye. (2009). Operating system battle in the ecosystem of smartphone industry. Paper presented at the 2009 international symposium on information engineering and electronic commerce.
  6. J. H. Kim & S. H. Lee. (2009). An effect analysis of Web basis Virtual Reality education Contents - Around the graphics transition. [An effect analysis of Web basis Virtual Reality education Contents - Around the graphics transition -. Journal of Digital Design, 9(4), 65-74.
  7. L. F. Tegarden, D. E. Hatfield & A. E. Echols. (1999). Doomed from the Start: What Is the Value of Selecting a Future Dominant Design? Strategic Management Journal, 20(6), 495-518. https://doi.org/10.1002/(SICI)1097-0266(199906)20:6<495::AID-SMJ43>3.0.CO;2-M
  8. L. Piron, F. Cenni, P. Tonin & M. Dam. (2001). Virtual reality as an assessment tool for arm motor deficits after brain lesions. Paper presented at the Studies in Health Technology and Informatics.
  9. M. V. Sanchez-Vives & M. Slater. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. https://doi.org/10.1038/nrn1651
  10. J. E. Dunsmoor, F. Ahs, D. J. Zielinski & K. S. LaBar. (2014). Extinction in multiple virtual reality contexts diminishes fear reinstatement in humans. Neurobiology of Learning and Memory, 113, 157-164. https://doi.org/10.1016/j.nlm.2014.02.010
  11. S. Basso Moro et al. (2014). A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study. NeuroImage, 85, 451-460. https://doi.org/10.1016/j.neuroimage.2013.05.031
  12. W. I. M. Willaert, R. Aggarwal, V. Herzeele, I. N. J. Cheshire & F. E. Vermassen. (2012). Recent advancements in medical simulation: Patient-specific virtual reality simulation. World Journal of Surgery, 36(7), 1703-1712. https://doi.org/10.1007/s00268-012-1489-0
  13. A. S. Merians et al. (2002). Virtual reality-augmented rehabilitation for patients following stroke. Physical Therapy, 82(9), 898-915.
  14. J. J. Kozak, P. A. Hancock, E. J. Arthur & S. T. Chrysler. (1993). Transfer of training from virtual reality. Ergonomics, 36(7), 777-784. https://doi.org/10.1080/00140139308967941
  15. C. J. Lin, H. J. Chen, P. Y. Cheng & T. L. Sun. (2014). Effects of Displays on Visually Controlled Task Performance in Three-Dimensional Virtual Reality Environment. Human Factors and Ergonomics In Manufacturing.
  16. K. H. Lee & K. C. H. (2016). Virtual Reality-based Training Program Using Computer-human Interface for Recovery of Upper Extremity Use in Stroke Patients. Journal of Digital Convergence, 14(1), 285-290. https://doi.org/10.14400/JDC.2016.14.1.285
  17. T. J. Lin & Y. J. Lan. (2015). Language learning in virtual reality environments: Past, present, and future. Educational Technology and Society, 18(4), 486-497.
  18. J. W. Kim, S. J. Park, G. Y. Min & K. M. Lee. (2017). Virtual Reality based Situation Immersive English Dialogue Learning System. Journal of Convergence for Information Technology, 7(6), 245-251. https://doi.org/10.22156/CS4SMB.2017.7.6.245
  19. H. H. Ip et al. (2018). Enhance emotional and social adaptation skills for children with autism spectrum disorder: A virtual reality enabled approach. Computers and Education, 117, 1-15. https://doi.org/10.1016/j.compedu.2017.09.010
  20. P. Williams & J. P. Hobson. (1995). Virtual reality and tourism: fact or fantasy? Tourism Management, 16(6), 423-427. https://doi.org/10.1016/0261-5177(95)00050-X
  21. D. A. Guttentag. (2010). Virtual reality: Applications and implications for tourism. Tourism Management, 31(5), 637-651. https://doi.org/10.1016/j.tourman.2009.07.003
  22. I. P. Tussyadiah, D. Wang, T. H. Jung & M. C. tom Dieck. (2018). Virtual reality, presence, and attitude change: Empirical evidence from tourism. Tourism Management, 66, 140-154. https://doi.org/10.1016/j.tourman.2017.12.003
  23. S. K. Sweeney, P. Newbill, T. Ogle & K. Terry. (2018). Using Augmented Reality and Virtual Environments in Historic Places to Scaffold Historical Empathy. TechTrends, 62(1), 114-118. https://doi.org/10.1007/s11528-017-0234-9
  24. Z. Lv, T. Yin, X. Zhang, H. Song & G. Chen. (2016). Virtual Reality Smart City Based on WebVRGIS. IEEE Internet of Things Journal, 3(6), 1015-1024. https://doi.org/10.1109/JIOT.2016.2546307
  25. W. S. Khor, B. Baker, K. Amin, A. Chan, K. Patel & J. Wong. (2016). Augmented and virtual reality in surgery-the digital surgical environment: Applications, limitations and legal pitfalls. Annals of Translational Medicine, 4(23).
  26. B. K. Wiederhold. (2017). How Augmented Reality Is Poised to Outpace Virtual Reality. Cyberpsychology, Behavior, and Social Networking, 20(8), 461-462. https://doi.org/10.1089/cyber.2017.29080.bkw
  27. N. S. Ali & M. Nasser. (2017). Review of virtual reality trends (previous, current, and future directions), and their applications, technologies and technical issues. ARPN Journal of Engineering and Applied Sciences, 12(3), 783-789.
  28. A. Li, Z. Montano, V. J. Chen & J. I. Gold. (2011). Virtual reality and pain management: current trends and future directions. Pain Management, 1(2), 147-157. https://doi.org/10.2217/pmt.10.15
  29. T. Sun & Y. Liu. (2012) Development of virtual reality technology research via patents data mining. AISC. Advances in Intelligent and Soft Computing, 117, 111-116.
  30. B. Spear. (2002). Virtual reality: Patent review. World Patent Information, 24(2), 103-109. https://doi.org/10.1016/S0172-2190(02)00002-9
  31. R. Rodriguez-Esteban & M. Bundschus. (2016). Text mining patents for biomedical knowledge. Drug Discovery Today, 21(6), 997-1002. https://doi.org/10.1016/j.drudis.2016.05.002
  32. H. J. No, Y. An & Y. Park. (2015). A structured approach to explore knowledge flows through technology-based business methods by integrating patent citation analysis and text mining. Technological Forecasting and Social Change, 97, 181-192. https://doi.org/10.1016/j.techfore.2014.04.007
  33. L. Yanhong & T. Runhua. (2007) A text-mining-based patent analysis in product innovative process. IFIP Advances in Information and Communication Technology, 250, 89-96.
  34. B. Yoon & Y. Park. (2004). A text-mining-based patent network: Analytical tool for high-technology trend. Journal of High Technology Management Research, 15(1), 37-50. https://doi.org/10.1016/j.hitech.2003.09.003
  35. N. Bechet, J. Chauche, V. Prince & M. Roche. (2014). How to combine text-mining methods to validate induced verb-object relations? Computer Science and Information Systems, 11(1), 133-155. https://doi.org/10.2298/CSIS130528021B
  36. J. Tian, M. Gao, Z. Zhang & J. Ren. (2012). Web text mining based on self-adaptive genetic support vector machine. Advanced Science Letters, 7, 653-657. https://doi.org/10.1166/asl.2012.2702
  37. I. Segura-Bedmar & P. Martinez. (2015). Pharmacovigilance through the development of text mining and natural language processing techniques. Journal of Biomedical Informatics, 58, 288-291. https://doi.org/10.1016/j.jbi.2015.11.001
  38. M. Perovsek, J. Kranjc, T. Erjavec, B. Cestnik & N. Lavrac. (2015). TextFlows: A visual programming platform for text mining and natural language processing. Science of Computer Programming.
  39. A. Cheptsov, A. Tenschert, P. Schmidt, B. Glimm, M. Matthesius & T. Liebig. (2014) Introducing a new scalable data-as-a-service cloud platform for enriching traditional text mining techniques by integrating ontology modelling and natural language processing. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8182, 62-74.
  40. B. Xie, Q. Ding & D. Wu. (2014). Text mining on big and complex biomedical literature. Big Data Analytics in Bioinformatics and Healthcare, 21-45.
  41. C. H. Wei, B. R. Harris, H. Y. Kao & Z. Lu. (2013). TmVar: A text mining approach for extracting sequence variants in biomedical literature. Bioinformatics, 29(11), 1433-1439. https://doi.org/10.1093/bioinformatics/btt156
  42. C. Tang & L. Guo. (2013). Digging for gold with a simple tool: Validating text mining in studying electronic word-of-mouth (eWOM) communication. Marketing Letters, 1-14.
  43. O. Netzer, R. Feldman, J. Goldenberg & M. Fresko. (2012). Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3), 521-543. https://doi.org/10.1287/mksc.1120.0713
  44. Y. Guo, T. Ma, A. L. Porter & L. Huang. (2012). Text mining of information resources to inform Forecasting Innovation Pathways. Technology Analysis and Strategic Management, 24(8), 843-861. https://doi.org/10.1080/09537325.2012.715491
  45. B. Yoon, R. Phaal & D. Probert. (2008). Morphology analysis for technology roadmapping: Application of text mining. R and D Management, 38(1), 51-68.
  46. C. H. Yu, A. Jannasch-Pennell & S. DiGangi. (2011). Compatibility between Text Mining and Qualitative Research in the Perspectives of Grounded Theory, Content Analysis, and Reliability. Qualitative Report, 16(3), 730-744.
  47. Y. Yi, L. Liu, C. H. Li, W. Song & S. Liu. (2012). Machine learning algorithms with co-occurrence based term association for text mining. Paper presented at the Proceedings - 4th International Conference on Computational Intelligence and Communication Networks, CICN 2012.
  48. M. Albathan, Y. Li & A. Algarni. (2012). Using patterns co-occurrence matrix for cleaning closed sequential patterns for text mining. Paper presented at the Proceedings - 2012 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2012.
  49. Y. Lu, Q. Mei & C. Zhai. (2011). Investigating task performance of probabilistic topic models: An empirical study of PLSA and LDA. Information Retrieval, 14(2), 178-203. https://doi.org/10.1007/s10791-010-9141-9
  50. M. M. Mostafa. (2013). More than words: Social networks' text mining for consumer brand sentiments. Expert Systems with Applications, 40(10), 4241-4251. https://doi.org/10.1016/j.eswa.2013.01.019
  51. Y. Dang, Y. Zhang & H. Chen. (2010). A lexicon-enhanced method for sentiment classification: An experiment on online product reviews. IEEE Intelligent Systems, 25(4), 46-53. https://doi.org/10.1109/MIS.2009.105
  52. S. P. Borgatti, A. Mehra, D. J. Brass & G. Labianca. (2009). Network analysis in the social sciences. Science, 323(5916), 892-895. https://doi.org/10.1126/science.1165821
  53. N. Cyram. (2013). Cyram Netminer 4.1. Seoul: Cyram.
  54. J. Liebowitz. (2005). Linking social network analysis with the analytic hierarchy process for knowledge mapping in organizations. Journal of Knowledge Management, 9(1), 76-86. https://doi.org/10.1108/13673270510582974
  55. G. R. Henderson, D. Iacobucci & B. J. Calder (1998). Brand diagnostics: Mapping branding effects using consumer associative networks. European Journal of Operational Research, 111(2), 306-327. https://doi.org/10.1016/S0377-2217(98)00151-9
  56. F. Hu & Y. Liu. (2016). A new algorithm CNM-Centrality of detecting communities based on node centrality. Physica A: Statistical Mechanics and its Applications, 446, 138-151. https://doi.org/10.1016/j.physa.2015.10.083
  57. M. Ovelgonne & A. Geyer-Schulz. (2012). A comparison of agglomerative hierarchical algorithms for modularity clustering. Challenges at the Interface of Data Analysis, Computer Science, and Optimization (pp. 225-232): Springer.
  58. D. Kim & S. Kim. (2017) Sustainable Supply Chain Based on News Articles and Sustainability Reports: Text Mining with Leximancer and DICTION. Sustainability, 9(6), 1008. https://doi.org/10.3390/su9061008
  59. M. Qu, L. Tahvanainen, P. Ahponen & P. Pelkonen. (2009). Bio-energy in China: Content analysis of news articles on Chinese professional internet platforms. Energy Policy, 37(6), 2300-2309. https://doi.org/10.1016/j.enpol.2009.02.024
  60. S. M. H. Dadgar, M. S. Araghi & M. M. Farahani. (2016). A novel text mining approach based on TF-IDF and support vector machine for news classification. Paper presented at the Proceedings of 2nd IEEE International Conference on Engineering and Technology, ICETECH 2016.
  61. G. Kim, J. Lee, D. Jang & S. Park. (2016). Technology Clusters Exploration for Patent Portfolio through Patent Abstract Analysis. Sustainability, 8(12), 1252. https://doi.org/10.3390/su8121252
  62. G. Salton & C. Buckley. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
  63. F. Lancia. (2012) The logic of the T-LAB tools explained. Retrieved September, 2.
  64. F. Lancia. (2016). T-LAB Plus-User's Manual, Tools for Text Analysis.
  65. B. Papaleo, G. Cangiano & S. Calicchia, (2013). Occupational safety and health professionals' training in Italy: Qualitative evaluation using T-LAB. Journal of Workplace Learning, 25(4), 247-263. https://doi.org/10.1108/13665621311316438