DOI QR코드

DOI QR Code

VR 자전거의 사용자 경험 설계 모델 예측에 관한 연구

A Study of Forecasting User Experience Design Model of Virtual Reality Bike

  • 투고 : 2018.07.11
  • 심사 : 2018.11.20
  • 발행 : 2018.11.28

초록

본 논문에서는 VR 자전거의 성능과 UX 변수의 항목과의 상호 관련성을 다중 회귀분석의 방법을 통하여 제품의 개념 설계 시에 중요시 되는 성능의 인자를 분석한다. 회귀식의 결과로 사용자 편의성과 감정적 요소에 영향을 주는 주요한 독립적 요소를 분석하고 VR 장치의 기구물 설계에서 중요 기능적 요소를 파악하여 품질기능전개를 수행하였다. 이들과의 연관관계는 주관적인 관계점수 대신에 회귀계수를 이용하여 체계적 기능 전개를 수립하였다. 본 논문의 결과로 기술적 만족도 중에서 사용자 편의성과 감정적 요소에 가장 많은 영향을 주는 주요 핵심 품질 기능의 요소로는 VR 자전거의 핸들링에 대한 만족도와 속도 조절에 대한 만족도가 가장 중요한 요소로 분석되었다. 또한, 제품 개발 전에 사용자 편의성과 사용자가 느끼는 감정을 기술적 요소로부터 예측할 수 있는 모델을 설정하여 제품 개발의 성공 가능성을 높일 수 있게 하였다.

By conducting multiple regression analysis, we analyzed the major independent factors affecting user convenience and emotional factors, and identified the important functional elements in the design of the VR device, so that the functional elements to be developed can be grasped in advance. As a result of the study, satisfaction of handling of VR bicycle and satisfaction of speed control by paddling were considered as the most important technical factors as independent factors which have the greatest influence on user convenience and emotional factor among technical satisfaction. Also, it is possible to increase the probabilities of successful design by setting a model that predicts user convenience and the emotional part from the technical factors.

키워드

DJTJBT_2018_v16n11_167_f0001.png 이미지

Fig. 1. Multiple Regression Analysis Procedure.

DJTJBT_2018_v16n11_167_f0002.png 이미지

Fig. 2. The Effect of 'Performance' on 'Usability' and' Emotion'.

Table 1. Evaluation Elements of VR Bike

DJTJBT_2018_v16n11_167_t0001.png 이미지

Table 2. Resulting Multiple Regression Equation of Usability

DJTJBT_2018_v16n11_167_t0002.png 이미지

Table 3. Resulting Emotional Values form Multiple Regression Analysis

DJTJBT_2018_v16n11_167_t0003.png 이미지

Table 4. Resulting Usability Values form Multiple Regression Analysis

DJTJBT_2018_v16n11_167_t0004.png 이미지

Table 5. Resulting Emotional Values form Multiple Regression Analysis

DJTJBT_2018_v16n11_167_t0005.png 이미지

참고문헌

  1. M. Kim, J. Kang & M. S. Jun. (2016). Market and Technical Trends of VR Technologies. Korea Journal of Contents, 14(4), 14-16.
  2. Korea Institute of Science and Technology Information. (2013). White paper on future technologies. 502.
  3. http://www.digi-capital.com/reports/#augmented-virtual-reality, Accessed on 20 January 2017.
  4. Y. Kim & H. Y. Ryoo. (2006). Assessing the usability of a virtual reality system's user interface. Korea Digital Design Council, 12, 341-350.
  5. S. Han. (2016). Quantitative analysis of display fatigue induced by 2D, 3D videos. The journal of digital convergence, 14(3), 329-335. https://doi.org/10.14400/JDC.2016.14.3.329
  6. S. J. Han, S. Kim, J. H. Cho & K. C. Koo. (2017). Ergonomic Evaluation of Indoor Bike Coordinated with Virtual Images. The Journal of Digital Policy & Management, 15(5), 443-451.
  7. S. U. Kim, K. Lee, J. H. Cho, K. C. Koo & S. B. Kim. (2017). Toward an Evaluation Model of User Experiences on Virtual Reality Indoor Bikes. European Scientific Journal, S.E, 1857-7881.
  8. J. Park, & S. H. Han. (2013). Defining user value: A case study of a smartphone. International Journal of Industrial Ergonomics, 43, 274-282. https://doi.org/10.1016/j.ergon.2013.04.005
  9. E. Kim & S. Kim. (2017). A Study on the User Experience of Smartphone Camera Application. Journal of the Korea Convergence Society, 8(12), 221-226. https://doi.org/10.15207/JKCS.2017.8.1.221
  10. J. Park, S. H. Han, H. K. Kim, H. Moon & J. Park. (2015). Developing and verifying a questionnaire for evaluating user value of a mobile device. Human Factors and Ergonomics in Manufacturing & Service Industries, 25(16), 724-739. https://doi.org/10.1002/hfm.20588
  11. A. G. Sutcliffe & K. Deol Kaur. (2000). Evaluating the usability of virtual reality user interfaces. Behaviour & Information Technology, 19(6), 415-426. https://doi.org/10.1080/014492900750052679
  12. Y. W. Song. (2009). Selection Methods of Customer Attributes for QFD Application, Journal of Science Research, 7(1), 1-8.
  13. H. G. Lee & S. B. Lee. (2003). A Study of HOQ Complexity Reduction by Quantification Method of Type3, Journal of the Korean society for Quality Management, 31(2), 131-142.
  14. H. S. Park & M. R. Lee. (2007). Application of Quality Function Deployment to Ergonomic Design of a Plier, Journal of the Ergonomics Society of Korea, 26(4), 85-90. https://doi.org/10.5143/JESK.2007.26.4.085
  15. J. H. Park & S. G. Kim. (2012). Development of Accident Forecasting Models in Freeway Tunnels using Multiple Linear Regression Analysis. The Journal of The Korea Institute of Intelligent Transport Systems, 11(6), 145-154. https://doi.org/10.12815/kits.2012.11.6.145
  16. K. S. Kim, S. H. Baek & S. S. Chung. (2012). ALC hardness Prediction by Mulitiple Regression Analysis. Asia Pacific Journal of Business Venturing and Enterpreneurship, 7(2), 103-111.
  17. S. Yang. (2016). Convergence Analysis of Factors Influencing the End-of-life Care Attitude in Undergraduate Nursing Students. Journal of the Korea Convergence Society, 7(4), 141-154 https://doi.org/10.15207/JKCS.2016.7.4.141
  18. Robert J. Friedrich. (1982). In Defense of Multiplicative Terms in Multiple Regression Equations. University of Texas Press, 26(4), 797-833.