References
- Ali IH, Brazil DP. Bone morphogenetic proteins and their antagonists: Current and emerging clinical uses. Br J Pharmacol. 2014. 171: 3620-3632. https://doi.org/10.1111/bph.12724
- Allison SJ. Fibrosis: Targeting emt to reverse renal fibrosis. Nat Rev Nephrol. 2015. 11: 565. https://doi.org/10.1038/nrneph.2015.133
- Boers W, Aarrass S, Linthorst C, Pinzani M, Elferink RO, Bosma P. Transcriptional profiling reveals novel markers of liver fibrogenesis: Gremlin and insulin-like growth factor-binding proteins. J Biol Chem. 2006. 281: 16289-16295. https://doi.org/10.1074/jbc.M600711200
- Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A. Bone morphogenetic proteins: A critical review. Cell Signal. 2011. 23: 609-620. https://doi.org/10.1016/j.cellsig.2010.10.003
- Buijs JT, van der Horst G, van den Hoogen C, Cheung H, de Rooij B, Kroon J, Petersen M, van Overveld PG, Pelger RC, van der Pluijm G. The bmp2/7 heterodimer inhibits the human breast cancer stem cell subpopulation and bone metastases formation. Oncogene. 2012. 31: 2164-2174. https://doi.org/10.1038/onc.2011.400
- Cahill E, Costello CM, Rowan SC, Harkin S, Howell K, Leonard MO, Southwood M, Cummins EP, Fitzpatrick SF, Taylor CT, Morrell NW, Martin F, McLoughlin P. Gremlin plays a key role in the pathogenesis of pulmonary hypertension. Circulation. 2012. 125: 920-930. https://doi.org/10.1161/CIRCULATIONAHA.111.038125
- Cai X, Yang X, Jin C, Li L, Cui Q, Guo Y, Dong Y, Yang X, Guo L, Zhang M. Identification and verification of differentially expressed micrornas and their target genes for the diagnosis of esophageal cancer. Oncol Lett. 2018. 16: 3642-3650.
- Canalis E, Economides AN, Gazzerro E. Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev. 2003. 24: 218-235. https://doi.org/10.1210/er.2002-0023
- Chang JC. Cancer stem cells: Role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine (Baltimore). 2016. 95: S20-25. https://doi.org/10.1097/MD.0000000000004766
- Chen MH, Yeh YC, Shyr YM, Jan YH, Chao Y, Li CP, Wang SE, Tzeng CH, Chang PM, Liu CY, Chen MH, Hsiao M, Huang CY. Expression of gremlin 1 correlates with increased angiogenesis and progression-free survival in patients with pancreatic neuroendocrine tumors. J Gastroenterol. 2013. 48: 101-108. https://doi.org/10.1007/s00535-012-0614-z
- Church RH, Ali I, Tate M, Lavin D, Krishnakumar A, Kok HM, Hombrebueno JR, Dunne PD, Bingham V, Goldschmeding R, Martin F, Brazil DP. Gremlin1 plays a key role in kidney development and renal fibrosis. Am J Physiol Renal Physiol. 2017. 312: F1141-F1157. https://doi.org/10.1152/ajprenal.00344.2016
- Ciuclan L, Sheppard K, Dong L, Sutton D, Duggan N, Hussey M, Simmons J, Morrell NW, Jarai G, Edwards M, Dubois G, Thomas M, Van Heeke G, England K. Treatment with antigremlin 1 antibody ameliorates chronic hypoxia/su5416-induced pulmonary arterial hypertension in mice. Am J Pathol. 2013. 183: 1461-1473. https://doi.org/10.1016/j.ajpath.2013.07.017
- Davis H, Irshad S, Bansal M, Rafferty H, Boitsova T, Bardella C, Jaeger E, Lewis A, Freeman-Mills L, Giner FC, Rodenas-Cuadrado P, Mallappa S, Clark S, Thomas H, Jeffery R, Poulsom R, Rodriguez-Justo M, Novelli M, Chetty R, Silver A, et al. Aberrant epithelial grem1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Nat Med. 2015. 21: 62-70. https://doi.org/10.1038/nm.3750
- Erdmann R, Ozden C, Weidmann J, Schultze A. Targeting the gremlin-vegfr2 axis - a promising strategy for multiple diseases? J Pathol. 2015. 236: 403-406. https://doi.org/10.1002/path.4544
- Farkas L, Farkas D, Gauldie J, Warburton D, Shi W, Kolb M. Transient overexpression of gremlin results in epithelial activation and reversible fibrosis in rat lungs. Am J Respir Cell Mol Biol. 2011. 44: 870-878. https://doi.org/10.1165/rcmb.2010-0070OC
- Galamb O, Wichmann B, Sipos F, Spisak S, Krenacs T, Toth K, Leiszter K, Kalmar A, Tulassay Z, Molnar B. Dysplasiacarcinoma transition specific transcripts in colonic biopsy samples. PLoS One. 2012. 7: e48547. https://doi.org/10.1371/journal.pone.0048547
- Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, Shen R, Brogi E, Brivanlou AH, Giancotti FG. The bmp inhibitor coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012. 150: 764-779. https://doi.org/10.1016/j.cell.2012.06.035
- Gazzerro E, Pereira RC, Jorgetti V, Olson S, Economides AN, Canalis E. Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology. 2005. 146: 655-665. https://doi.org/10.1210/en.2004-0766
- Gazzerro E, Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Economides AN, Canalis E. Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J Biol Chem. 2007. 282: 31549-31557. https://doi.org/10.1074/jbc.M701317200
- Graham JR, Williams CM, Yang Z. Microrna-27b targets gremlin 1 to modulate fibrotic responses in pulmonary cells. J Cell Biochem. 2014. 115: 1539-1548. https://doi.org/10.1002/jcb.24809
- Guan Y, Cheng W, Zou C, Wang T, Cao Z. Gremlin1 promotes carcinogenesis of glioma in vitro. Clin Exp Pharmacol Physiol. 2017. 44: 244-256. https://doi.org/10.1111/1440-1681.12697
- Guimei M, Baddour N, Elkaffash D, Abdou L, Taher Y. Gremlin in the pathogenesis of hepatocellular carcinoma complicating chronic hepatitis c: An immunohistochemical and pcr study of human liver biopsies. BMC Res Notes. 2012. 5: 390. https://doi.org/10.1186/1756-0500-5-390
- Han EJ, Yoo SA, Kim GM, Hwang D, Cho CS, You S, Kim WU. Grem1 is a key regulator of synoviocyte hyperplasia and invasiveness. J Rheumatol. 2016. 43: 474-485. https://doi.org/10.3899/jrheum.150523
- Heron M, van Moorsel CH, Grutters JC, Huizinga TW, van der Helm-van Mil AH, Nagtegaal MM, Ruven HJ, van den Bosch JM. Genetic variation in grem1 is a risk factor for fibrosis in pulmonary sarcoidosis. Tissue Antigens. 2011. 77: 112-117. https://doi.org/10.1111/j.1399-0039.2010.01590.x
- Hong D, Liu T, Huang W, Liao Y, Wang L, Zhang Z, Chen H, Zhang X, Xiang Q. Gremlin1 delivered by mesenchymal stromal cells promoted epithelial-mesenchymal transition in human esophageal squamous cell carcinoma. Cell Physiol Biochem. 2018. 47: 1785-1799. https://doi.org/10.1159/000491060
- Jang BG, Kim HS, Chang WY, Bae JM, Oh HJ, Wen X, Jeong S, Cho NY, Kim WH, Kang GH. Prognostic significance of stromal grem1 expression in colorectal cancer. Hum Pathol. 2017. 62: 56-65. https://doi.org/10.1016/j.humpath.2016.12.018
- Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest. 2003. 112: 1776-1784. https://doi.org/10.1172/JCI200320530
- Karagiannis GS, Berk A, Dimitromanolakis A, Diamandis EP. Enrichment map profiling of the cancer invasion front suggests regulation of colorectal cancer progression by the bone morphogenetic protein antagonist, gremlin-1. Mol Oncol. 2013. 7: 826-839. https://doi.org/10.1016/j.molonc.2013.04.002
- Karagiannis GS, Musrap N, Saraon P, Treacy A, Schaeffer DF, Kirsch R, Riddell RH, Diamandis EP. Bone morphogenetic pro tein antagonist gremlin-1 regulates colon cancer progression. Biol Chem. 2015. 396: 163-183.
- Karagiannis GS, Treacy A, Messenger D, Grin A, Kirsch R, Riddell RH, Diamandis EP. Expression patterns of bone morphogenetic protein antagonists in colorectal cancer desmoplastic invasion fronts. Mol Oncol. 2014. 8: 1240-1252. https://doi.org/10.1016/j.molonc.2014.04.004
- Kim HS, Shin MS, Cheon MS, Kim JW, Lee C, Kim WH, Kim YS, Jang BG. Grem1 is expressed in the cancer-associated myofibroblasts of basal cell carcinomas. PLoS One. 2017. 12: e0174565. https://doi.org/10.1371/journal.pone.0174565
- Kim M, Yoon S, Lee S, Ha SA, Kim HK, Kim JW, Chung J. Gremlin-1 induces bmp-independent tumor cell proliferation, migration, and invasion. PLoS One. 2012. 7: e35100. https://doi.org/10.1371/journal.pone.0035100
- Lavoz C, Alique M, Rodrigues-Diez R, Pato J, Keri G, Mezzano S, Egido J, Ruiz-Ortega M. Gremlin regulates renal inflammation via the vascular endothelial growth factor receptor 2 pathway. J Pathol. 2015. 236: 407-420. https://doi.org/10.1002/path.4537
- Lee H, O'Meara SJ, O'Brien C, Kane R. The role of gremlin, a bmp antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci. 2007. 48: 4291-4299. https://doi.org/10.1167/iovs.07-0086
- Lewis A, Freeman-Mills L, de la Calle-Mustienes E, Giraldez-Perez RM, Davis H, Jaeger E, Becker M, Hubner NC, Nguyen LN, Zeron-Medina J, Bond G, Stunnenberg HG, Carvajal JJ, Gomez-Skarmeta JL, Leedham S, Tomlinson I. A polymorphic enhancer near grem1 influences bowel cancer risk through differential cdx2 and tcf7l2 binding. Cell Rep. 2014. 8: 983-990. https://doi.org/10.1016/j.celrep.2014.07.020
- Li J, Liu H, Zou L, Ke J, Zhang Y, Zhu Y, Yang Y, Gong Y, Tian J, Zou D, Peng X, Gong J, Zhong R, Huang K, Chang J, Miao X. A functional variant in grem1 confers risk for colorectal cancer by disrupting a hsa-mir-185-3p binding site. Oncotarget. 2017. 8: 61318-61326.
- Mitola S, Ravelli C, Moroni E, Salvi V, Leali D, Ballmer-Hofer K, Zammataro L, Presta M. Gremlin is a novel agonist of the major proangiogenic receptor vegfr2. Blood. 2010. 116: 3677-3680. https://doi.org/10.1182/blood-2010-06-291930
- Mulvihill MS, Kwon YW, Lee S, Fang LT, Choi H, Ray R, Kang HC, Mao JH, Jablons D, Kim IJ. Gremlin is overexpressed in lung adenocarcinoma and increases cell growth and proliferation in normal lung cells. PLoS One. 2012. 7: e42264. https://doi.org/10.1371/journal.pone.0042264
- Myllarniemi M, Lindholm P, Ryynanen MJ, Kliment CR, Salmenkivi K, Keski-Oja J, Kinnula VL, Oury TD, Koli K. Gremlin-mediated decrease in bone morphogenetic protein signaling promotes pulmonary fibrosis. Am J Respir Crit Care Med. 2008. 177: 321-329. https://doi.org/10.1164/rccm.200706-945OC
- Namkoong H, Shin SM, Kim HK, Ha SA, Cho GW, Hur SY, Kim TE, Kim JW. The bone morphogenetic protein antagonist gremlin 1 is overexpressed in human cancers and interacts with ywhah protein. BMC Cancer. 2006. 6: 74. https://doi.org/10.1186/1471-2407-6-74
- Pelli A, Vayrynen JP, Klintrup K, Makela J, Makinen MJ, Tuomisto A, Karttunen TJ. Gremlin1 expression associates with serrated pathway and favourable prognosis in colorectal cancer. Histopathology. 2016. 69: 831-838. https://doi.org/10.1111/his.13006
- Rodrigues-Diez R, Lavoz C, Carvajal G, Rayego-Mateos S, Rodrigues Diez RR, Ortiz A, Egido J, Mezzano S, Ruiz-Ortega M. Gremlin is a downstream profibrotic mediator of transforming growth factor-beta in cultured renal cells. Nephron Exp Nephrol. 2012. 122: 62-74. https://doi.org/10.1159/000346575
- Rodrigues-Diez R, Rodrigues-Diez RR, Lavoz C, Carvajal G, Droguett A, Garcia-Redondo AB, Rodriguez I, Ortiz A, Egido J, Mezzano S, Ruiz-Ortega M. Gremlin activates the smad pathway linked to epithelial mesenchymal transdifferentiation in cultured tubular epithelial cells. Biomed Res Int. 2014. 2014:802841.
- Sato M, Kawana K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, Adachi K, Nagasaka K, Matsumoto Y, Wada-Hiraike O, Oda K, Osuga Y, Fujii T. Clinical significance of gremlin 1 in cervical cancer and its effects on cancer stem cell maintenance. Oncol Rep. 2016. 35: 391-397. https://doi.org/10.3892/or.2015.4367
- Savagner P. The epithelial-mesenchymal transition (emt) phenomenon. Ann Oncol. 2010. 21 Suppl 7: vii89-92.
- Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, Walter M, Fehm T, Solomayer E, Riess O, Wallwiener D, Kurek R, Neubauer HJ. Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res. 2006. 66: 5278-5286. https://doi.org/10.1158/0008-5472.CAN-05-4610
- Sneddon JB, Zhen HH, Montgomery K, van de Rijn M, Tward AD, West R, Gladstone H, Chang HY, Morganroth GS, Oro AE, Brown PO. Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci U S A. 2006. 103: 14842-14847. https://doi.org/10.1073/pnas.0606857103
- Stabile H, Mitola S, Moroni E, Belleri M, Nicoli S, Coltrini D, Peri F, Pessi A, Orsatti L, Talamo F, Castronovo V, Waltregny D, Cotelli F, Ribatti D, Presta M. Bone morphogenic protein antagonist drm/gremlin is a novel proangiogenic factor. Blood. 2007. 109: 1834-1840. https://doi.org/10.1182/blood-2006-06-032276
- Staloch D, Gao X, Liu K, Xu M, Feng X, Aronson JF, Falzon M, Greeley GH, Rastellini C, Chao C, Hellmich MR, Cao Y, Ko TC. Gremlin is a key pro-fibrogenic factor in chronic pancreatitis. J Mol Med (Berl). 2015. 93: 1085-1093. https://doi.org/10.1007/s00109-015-1308-9
- Tamminen JA, Parviainen V, Ronty M, Wohl AP, Murray L, Joenvaara S, Varjosalo M, Lepparanta O, Ritvos O, Sengle G, Renkonen R, Myllarniemi M, Koli K. Gremlin-1 associates with fibrillin microfibrils in vivo and regulates mesothelioma cell survival through transcription factor slug. Oncogenesis. 2013. 2: e66. https://doi.org/10.1038/oncsis.2013.29
- Wang DJ, Zhi XY, Zhang SC, Jiang M, Liu P, Han XP, Li J, Chen Z, Wang CL. The bone morphogenetic protein antagonist gremlin is overexpressed in human malignant mesothelioma. Oncol Rep. 2012. 27: 58-64.
- Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S, Idowu O, Li M, Shen C, Hu A, Haydon RC, Kang R, Mok J, Lee MJ, Luu HL, Shi LL. Bone morphogenetic protein (bmp) signaling in development and human diseases. Genes Dis. 2014. 1: 87-105. https://doi.org/10.1016/j.gendis.2014.07.005
- Yamasaki Y, Ishigami S, Arigami T, Kita Y, Uchikado Y, Kurahara H, Kijima Y, Maemura K, Natsugoe S. Expression of gremlin1 in gastric cancer and its clinical significance. Med Oncol. 2018. 35: 30. https://doi.org/10.1007/s12032-017-1073-4
- Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I, DeVecchio J, Kalady MF, Hjelmeland AB, Rich JN. Glioma cancer stem cells secrete gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev. 2014. 28: 1085-1100. https://doi.org/10.1101/gad.235515.113
- Yin M, Tissari M, Tamminen J, Ylivinkka I, Ronty M, von Nandelstadh P, Lehti K, Hyytiainen M, Myllarniemi M, Koli K. Gremlin-1 is a key regulator of the invasive cell phenotype in mesothelioma. Oncotarget. 2017. 8: 98280-98297.