Fig. 1. Analysis model (Determination of analysis unit)
Table 1. Disagreement rate by patient characteristics
Table 2. Disagreement rate by medical institutions characteristics
Table 3. Disagreement rate due to movement of medical institutions
Table 4. Disagreement rate when moved to the same department
Table 5. Disagreement rate when moved to another department
참고문헌
- M. Farzandipour, A. Sheikhtaheri & F. Sadoug hi. (2010). Effective factors on accuracy of principal diagnosis coding based on international classification of diseases, the 10th revision (ICD-10). International Journal of Information Management, 30(1), 78-84. DOI : 10.1016 /j.ijinfomgt. 2009. 07. 002 https://doi.org/10.1016/j.ijinfomgt.2009.07.002
- WHO. (2016). International Classification of Diseases(ICD)-10.
- J. H. Lee & M. S. Sim. (2009). The accuracy of the ICD-10 code for trauma patients visiting on emergency department and the error in the ICISS. Journal of the Korean Association of Traumatology, 22(1), 108-115. UCI : G704 -SER000001561. 2009.22.1.009
- Y. H. Kim & K. H. Kim. (2015). Study about the relationship between Chief complaint of pure death patients using medical record information. Journal of Digital Convergence, 13(1), 407-414. DOI : 10.14400 / JDC. 2015. 13. 1. 407 https://doi.org/10.14400/JDC.2015.13.1.407
- Y. R. Song, M. S. Lee, D. R. Kim & K. H. Kim. (2017). A Convergence Study on the Characteristics of Length of Hospital Stays of Injured and Traumatic Death Patients - Based on the Korea National Hospital Discharge Injury Survey Data. Journal of the Korea Convergence Society, 8(5), 87-96. DOI : 10.15207/JKCS.2017.8.5.087
- D. Lorence. (2003). Regional variation in m edical classification agreement: benchmar king the coding gap. Journal of Medical System, 27(5), 435-443 . DOI : https://doi.org/10.1023/A:1025607805588
- K. H. Kim, Y. H. Kim, J. W. Park, S. Y. W On, H. Kang, H. Choi & S. T. Han. (2008). A study on the concordance rate between principal diagnosis on the Written request and final diagnosis of obstetrics and gynecologic patients. Journal of the Korean Data Analysis Society, 10(4B), 1923-1931. DOI : 10.15207/JKCS.2017.8.5.087
- G. S. Lee. (1995). Diagnosis coding agre ement between medical records and medical claim billing data [dissertation]. Seoul National University; Korea.
- J. Stausberg, N. Lehmann, D. Kaczmarek. & M. Stein. (2008). Reliability of diagnoses coding with ICD-10. International Journal of Medical Informatics, 77(2008), 50-57. DOI: 10.1016/j.ijmedinf.2006.11.005
- Y. J. Kim, D. R. Kim & K. H. Kim. (2018). A Study on Clinical Characteristics of Patients with Mild Cognitive Impairment at Convalescent Hospitals. Journal of the Korea Convergence Society, 9(8), 77-85. DOI : 10.15207/JKCS.2018.9.8.077
- http://www.koiha.kr/
- O. R. Moon, C. Y. Kim & M. K. Kim. (1992). Individual variations in the code of the international classification of disease for similar outpatient conditions among general practitioners. Health Policy and Management, 2(1), 66-79.
- Y. S. Seo, K. S. Lee, J. H. Park & S. H. Kang. (2010). A study on regional medical utilization variation of hospital inpatients in Korea, Journal of the Korea Academia-Industrial cooperation Society, 11(4), 1511-1519. UCI : G704 - 001653. 2010.11.4.037 https://doi.org/10.5762/KAIS.2010.11.4.1511
- S. O. Bae & G. W. Kang. (2015). A compar ative study of the disease codes between korean national health insurance claims and korean national hospital discharge in-depth injury survey. Journal of Health Policy and Management, 24(4), 322-329. DOI : 10.4332/KJHPA.2014.24.4.322
- S. O. Bae, G. W. Kang, Y. Boo, Y. Lee, H. S. Choi & H. Y. Choi. (2015). A Study on the Difference in Disease Coding of Doctors, Medical Insurance Review Nurses and Medical Record Administrators based on Coding Simulation. Journal of Health Informatics and Statistics, 40(3), 161-174. UCI : G704-SER000008861.2015.40.3.015
- Y. H. Jeon. (2018). Variation in disease coding by physician in Korea : based on outpatient claim data. Doctoral dissertation. Chungbuk National University, Cheongju Chungbuk.