Fig. 1. Structure diagram of DNN
Fig. 2. Sliding Window.
Fig. 3. Production areas and Agricultural weather stations
Fig. 4. The location of agricultural weather station and GloSea5
Fig. 5. Boxplot of RMSE and MAE by training days- predicted days : 30 days.
Fig. 6. Boxplot of RMSE and MAE by training days- predicted days : 210 days.
Fig. 7. The result of DNN - predicted days : 30days, training days : 30days.
Fig. 8. The result of DNN - predicted days : 210days, training days : 90days.
Fig. 9. Comparison of obs, GloSea5, DNN1 and DNN2
Table 1. Variables of GloSea5
Table 2. The result of validation by number of grid and predicted days - training days : 60days
Table 3. Comparison of RMSE by GloSea5, DNN1 and DNN2 - training days : 30days
Table 4. Comparison of MAE by GloSea5, DNN1 and DNN2 - training days : 30days
참고문헌
- G. V. Oldenborgh, F. Doblas-Reyes, B. Wouters & W. Hazeleger. (2012). Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Climate Dynamics, 38(7), 1263-80. https://doi.org/10.1007/s00382-012-1313-4
- M. I. Jung, S. W. Son, J. Choi & H. S. Kang. (2015). Assessment of 6-Month Lead Prediction Skill of the GloSea5 Hindcast Experiment. Atmosphere, 25(2), 323-337. https://doi.org/10.14191/Atmos.2015.25.2.323
- K. H. Son, D. H. Bae & H. S. Cheong. (2015). Construction & Evaluation of GloSea5-Based Hydrological Drought Outlook System. Atmosphere, 25(2), 271-281. https://doi.org/10.14191/Atmos.2015.25.2.271
- J. S. Min, M. H. Lee, J. B. Jee & M. Jang. (2016). A Study of the Method for Estimating the Missing Data from Weather Measurement Instruments. Journal of Digital Convergence, 14(8), 245-252. https://doi.org/10.14400/JDC.2016.14.8.245
- J. H. Ha, Y. H. Lee & Y. H. Kim. (2016). Forecasting the precipitation of the next day using deep learning. Journal of Korean Institute of Intelligent Systems, 26(2), 93-98. https://doi.org/10.5391/JKIIS.2016.26.2.093
- Q. K. Tran & S. K. Song. (2017). Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States. Journal of KIISE, 44(6), 607-612. https://doi.org/10.5626/JOK.2017.44.6.607
- I. H. Ryu. (2006). A Comparative Study of Time Series Forecasting By Artificial Neural Networks. Master dissertation. Yonsei University, Seoul.
- E. M. Yang, H. Jae. Lee & C. H. Seo. (2017). Comparison of Detection Performance of Intrusion Detection System Using Fuzzy and Artificial Neural Network. Journal of Digital Convergence, 15(6), 391-398. https://doi.org/10.14400/JDC.2017.15.6.391
- H. S. Song. (2017). Comparison of Performance between MLP and RNN Model to Predict Purchase Timing for Repurchase Product. Journal of information technology applications & management, 24(1), 111-128. https://doi.org/10.21219/jitam.2017.24.1.111
- J. S. Kim. (2013). Long-Term Runoff Prediction Using Artificial Neural Network in the Bocheong-Cheon. Master dissertation. Kyung Hee University, Seoul.
- K. T. Bae. (2016) Development of a Price Prediction Model of Agricultural Product using Artificial Neural Networks. Master dissertation. Soongsil University, Seoul.
- K. K. Seo. (2015). Sales Prediction of Electronic Appliances using a Convergence Model based on Artificial Neural Network and Genetic Algorithm. Journal of Digital Convergence, 13(9), 177-182. https://doi.org/10.14400/JDC.2015.13.9.177
- Y. Cho & I. Kim. (2010). Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network. Journal of Intelligence and Information Systems, 16(4), 159-172.
- M. Kim & C. Hong. (2016). The Artificial Neural Network based Electric Power Demand Forecast using a Season and Weather Informations. Journal of The Institute of Electronics and Information Engineers, 53(1), 71-78. https://doi.org/10.5573/ieie.2016.53.1.071
- B. W. Chio. (2006). Prediction of Swell Index of Clay Using the Artificial Neural Networks. Master dissertation. Kyungpook National University, Daegu.
- N. R. Jo. (2017). Design and Implementation of criminal Identification System Based on Deep Learning. Master dissertation, Gachon University, Gyeonggi.
- S. Moon, S. Han, K. Choi & J. Song. (2016). Data processing system and spatial-temporal reproducibility assessment of GloSea5 model. Journal of Korea Water Resources Association, 49(9), 761-771. https://doi.org/10.3741/JKWRA.2016.49.9.761
- Y. Shin & S. Yoon. (2016). Electricity forecasting model using specific time zone. Journal of the Korean Data and Information Science Society, 27(2), 275-284. https://doi.org/10.7465/jkdi.2016.27.2.275