References
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature, vol. 521, May. 2015, pp. 436-444. https://doi.org/10.1038/nature14539
- A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," Advances in Neural Information Processing 25, 2012, MIT Press, Cambridge, MA.
- B. K. Kim, J. Roh, S. Y. Dong, and S. Y. Lee, "Hierarchical Committee of Deep Convolutional Neural Networks for Robust facial Expression Recognition," J. Multimodal User Interfaces, vol. 10, issue. 2, Jun. 2016, pp. 173-189. https://doi.org/10.1007/s12193-015-0209-0
- J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan, "Brain-Computer Interfaces for Communication and Control," Clin. Neurophysiol, vol. 113, 2002, pp. 767-791. https://doi.org/10.1016/S1388-2457(02)00057-3
- B. Blankertz, G. Dornhege, M. Krauledat, K. R. Muller, V. Kunzmann, F. Losch, and G. Curio, "The Berlin Brain-Computer Interface: EEG-based Communication without Subject Training," IEEE Trans. Neural Sys. and Rehabil., vol. 14, no. 2, 2006, pp. 147-152. https://doi.org/10.1109/TNSRE.2006.875557
- J. H. Lim, H. J. Hwang, C. H. Han, K. Y. Jung, and C. H. Im, "Corrigendum: Classification of Binary Intentions for Individuals with Impaired Oculomotor Function: 'eyes-closed' SSVEP-based Brain-Computer Interface," J. Neural Eng., vol. 10, 2013, pp. 1-9.
- L. A. Farwell and E. Donchin, "The truth Will Out: Interrogative Polygraphy ("Lie Detection") with Event-related brain Potentials," Psychophysiology, vol. 28, 1991, pp. 531-547. https://doi.org/10.1111/j.1469-8986.1991.tb01990.x
- C. Davatzikos, K. Ruparel, Y. Fan, D. G. Shen, M. Acharyya, J. W. Loughead, R. C. Gur, and D. D. Langleben, "Classifying Spatial Patterns of Brain Activity with Machine Learning Methods: Application to Lie Detection," Neuroimage, vol. 28, 2005, pp. 663-668. https://doi.org/10.1016/j.neuroimage.2005.08.009
- S. Y. Dong, B. K. Kim, and S. Y. Lee, "EEG-based Classification of Implicit Intention during Self-relevant Sentence Reading," IEEE Trans. Cybernetics, vol. 46, Nov. 2016, pp. 2535-2542. https://doi.org/10.1109/TCYB.2015.2479240
- S. Y. Dong, B. K. Kim, and S. Y. Lee, "Implicit Agreeing/Disagreeing Intention While Reading Self-relevant Sentences: A Human fMRI Study," Social Neuroscience, vol. 11, issue. 3, 2016, pp. 221-232. https://doi.org/10.1080/17470919.2015.1059362
- S. H. Oh, "Subject Independent Classification of Implicit Intention Based on EEG Signals," Int. Journal of Contents, vol. 12, no. 3, Sep. 2016, pp. 12-16. https://doi.org/10.5392/IJOC.2016.12.3.012
- S. Haykin, Neural Networks, MacMillan, 1994.
- T. W. Lee, M. Girolami, and T. J. Sejnowski, "A Unifying Information Theoretic Framework for Independent Component Analysis," Computers & Mathematics with Applications, vol. 31, no. 11, Mar. 2000, pp. 1-21. https://doi.org/10.1016/0898-1221(96)00057-0
- A. J. Bell and T. J. Sejnowski, "An Information-Maximisation Approach to Blind Separation and Blind Deconvolution," Neural Computation, vol. 7, no. 6, Nov. 1995, pp. 1004-1034.
- S. Amari, "Natural Gradient Works Efficiently in Learning," Neural Computation, vol. 10, Feb. 1998, pp. 251-276. https://doi.org/10.1162/089976698300017746
- C. M. Bishop, Pattern Recognition and Machine Learning, Springer Science+Business Media, LLC, New York, 2006.
- T. W. Lee, M. Girolami, and T. J, Sejnowski, "Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Sub-Gaussian and Super-Gaussian Sources," Neural Computation, vol. 11, 1999, pp. 417-441. https://doi.org/10.1162/089976699300016719
- C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, Apr. 2011, pp. 1-27. http://www.csie.ntu.edu.tw/-cjlin/libsvm