DOI QR코드

DOI QR Code

각질층 환경변화에 따른 얼굴과 하박내측 피부의 탄력 특성 비교연구

Study on Skin Elasticity Property between Face and Forearm according to the Environmental Change of Stratum Corneum

  • 장민열 (서원대학교 화장품학부, 글로벌피부임상센터)
  • Chang, Minyoul (Division of Cosmetics, Seowon University, Global Skin Research Center)
  • 투고 : 2018.11.15
  • 심사 : 2018.12.12
  • 발행 : 2018.12.30

초록

피부의 탄성은 주로 콜라겐, 탄력섬유 등이 풍부한 진피의 영향을 받는다. 하지만, 피부의 가장 바깥층인 각질층의 변화가 피부의 기계적인 특성에 어떠한 영향을 미치는지에 대해선 아직 명확하게 밝혀지지 않고 있다. 이에 본 연구에서는 새롭게 디자인한 시험방법을 통해 피부 깊이별 탄성 특성과 수화과정을 통한 각질층 변화가 피부 탄성 특성에 어떻게 영향을 주는지를 알아보았다. 또한 이 방법을 이용해 얼굴피부와 하박내측 피부의 특성을 비교 평가하였다. 25-40세 연령의 건강한 성인 10명을 대상으로, 피부 깊이별 탄성 특성을 연구하기 위해 $Cutometer^{(R)}$의 음압을 다양하게 설정하여 얼굴피부와 하박내측 피부의 탄성 특성을 측정하여 비교 평가하였다. 음압은 100, 200, 300, 450 mbar로 구분하여 측정하였다. 또한 충분한 수화과정을 통해 각질층의 변화를 유도하고, 다양한 음압 조건에서 피부 탄성 특성을 측정하였다. 그 결과, 음압 조건을 달리함에 따라 피부 깊이에 따른 탄성 특성 측정이 가능함을 확인하였다. 그리고 하박내측 피부의 R7 값은 모든 음압조건에서 얼굴피부보다 통계적으로 유의하게 높았다(p < 0.05). 또한 수화과정에 의한 각질층의 변화는 피부탄성 특성에 영향을 줄 수 있음을 확인하였다. 특히 얼굴피부의 R7 값은 300 mbar 음압조건에서 수화전 상태의 피부에 비해 통계적으로 유의하게 변화하였다(p < 0.05). 그리고 전체적으로 얼굴피부가 하박내측 피부보다 수화과정에 더 크게 영향을 받고 있음을 알 수 있었다. 이러한 결과는 다양한 음압조건과 피부 수화 과정을 활용한다면, 각질층 및 표피층의 변화를 고려한 피부탄력특성을 평가할 수 있는 유용한 시험법이 될 것으로 사료된다.

Skin elasticity has been known to be influenced by the change of dermal components such as collagen, elastic fiber, and glycosaminoglycans. However, it is unclear whether the uppermost epidermis may affect the mechanical characteristics of elasticity. In present study we tried to find the role of stratum corneum when determining the elastic property under skin bioengineering measurement with $Cutometer^{(R)}$. A total of 10 healthy volunteers aged 25-40 years were investigated by the parameters reflecting the skin elasticity from face and volar forearm. Within various ranges of suction pressure, R0 (=Uf), R7 (=Ur/Uf) and R8 (=Ua) were obtained to explore the depth-associated elasticity. In addition, these parameters were re-measured after the skin was fully hydrated. As results, we found that the measurement of depth-associated elasticity was possible as using various suction pressure. And the R7 parameter was significantly lower from face than those from forearm in before hydration (p < 0.05). Also, we found that the hydration of stratum corneum could affect skin elasticity. Especially, the R7 parameter at 300 mbar suction pressure of face skin showed significantly increased values than that of before hydration (p < 0.05). Interestingly, measured data from the face before and after hydration manifested relatively higher variation than from the forearm. These results suggest that it is possible to evaluate the skin elasticity considering the changes of stratum corneum and epidermis by using various suction pressure and skin hydration.

키워드

HJPHBN_2018_v44n4_455_f0001.png 이미지

Figure 1. Example of a skin deformation curve obtained with a Cutometer.

HJPHBN_2018_v44n4_455_f0002.png 이미지

Figure 2. Supposed skin depth that may be effected by various suction pressure of a Cutometer.

HJPHBN_2018_v44n4_455_f0003.png 이미지

Figure 3. The graph for the changes of elastic parameter changes between forearm and face skin of before hydration under different suction pressure. Each values represents mean ± SD (*p < 0.05).

HJPHBN_2018_v44n4_455_f0004.png 이미지

Figure 4. The graph for changes of each parameter on forearm skin after hydration. Each values represents mean ± SD (no significant).

HJPHBN_2018_v44n4_455_f0005.png 이미지

Figure 5. The graph for changes of each parameter on face skin after hydration. Each values represents mean ± SD (before hydration vs after hydration, R7 parameter, *p < 0.05).

Table 1. The Comparison of the Changes of Elastic Parameters between Forearm and Face Skin of before Hydration under Different Suction Pressure

HJPHBN_2018_v44n4_455_t0001.png 이미지

Table 2. The Difference (△) of Elasticity Parameters between before and after Hydration

HJPHBN_2018_v44n4_455_t0002.png 이미지

Table 3. The Comparison of the Trend-line Slope on each Elastic Parameter between Forearm and Face Skin

HJPHBN_2018_v44n4_455_t0003.png 이미지

참고문헌

  1. N. A. Fenske and C. W. Lober, Structural and functional changes of normal aging skin, J. Am. Acad. Dermatol., 15(4), 571 (1986). https://doi.org/10.1016/S0190-9622(86)70208-9
  2. L. Smith, Histopathologic characteristics and ultrastructure of aging skin, Cutis, 43, 414 (1989).
  3. M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Structural characteristics of the aging skin: a review, Cutan. Ocul. Toxicol., 26, 343 (2007). https://doi.org/10.1080/15569520701622951
  4. H. Sumino, S. Ichikawa, M. Abe, Y. Endo, O. Ishikawa, and M. Kurabayashi, Effects of aging, menopause, and hormone replacement therapy on forearm skin elasticity in women, J. Am. Geriatr. Soc., 945, 52 (2004).
  5. J. M. Waller and H. I. Maibach, Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity, Skin Res. Technol., 11, 221 (2005). https://doi.org/10.1111/j.0909-725X.2005.00151.x
  6. J. M. Waller and H. I. Maibach, Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure, Skin Res. Technol., 12, 145 (2006). https://doi.org/10.1111/j.0909-752X.2006.00146.x
  7. J. Fore, A review of skin and the effects of aging on skin structure and function, Ostomy Wound Manag., 52, 24 (2006).
  8. S. Diridollou, V. Vabre, M. Berson, L. Vaillant, D. Black, J. M. Lagarde, J. M. Gregoire, Y. Gall, and F. Patat, Skin ageing: changes of physical properties of human skin in vivo, Int. J. Cosmet. Sci., 23, 353 (2001). https://doi.org/10.1046/j.0412-5463.2001.00105.x
  9. H. S. Ryu, Y. H. Joo, S. O. Kim, K. C. Park, and S. W. Youn, Influence of age and regional differences on skin elasticity as measured by the $Cutometer^{(R)}$, Skin Res. Technol., 14, 354 (2008). https://doi.org/10.1111/j.1600-0846.2008.00302.x
  10. J. H. Chung, Photoaging in Asians, Photodermatol. Photoimmunol. Photomed., 19, 109 (2003). https://doi.org/10.1034/j.1600-0781.2003.00027.x
  11. M. Egawa and T. Kajikawa, Changes in the depth profile of water in the stratum corneum treated with water, Skin Res. Technol., 15, 242 (2009). https://doi.org/10.1111/j.1600-0846.2009.00362.x
  12. N. Nakagawa, M. Matsumoto, and S. Sakai, In vivo measurement of the water content in the dermis by confocal Raman spectroscopy, Skin Res. Technol., 16, 137 (2010). https://doi.org/10.1111/j.1600-0846.2009.00410.x
  13. A. Boehling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy, Skin Res. Technol., 20, 50 (2014). https://doi.org/10.1111/srt.12082
  14. H. Arimoto and M. Egawa, Imaging wavelength and light penetration depth for water content distribution measurement of skin, Skin Res. Technol., 21, 94 (2015). https://doi.org/10.1111/srt.12163