Figure 1. Example of a skin deformation curve obtained with a CutometerⓇ.
Figure 2. Supposed skin depth that may be effected by various suction pressure of a CutometerⓇ.
Figure 3. The graph for the changes of elastic parameter changes between forearm and face skin of before hydration under different suction pressure. Each values represents mean ± SD (*p < 0.05).
Figure 4. The graph for changes of each parameter on forearm skin after hydration. Each values represents mean ± SD (no significant).
Figure 5. The graph for changes of each parameter on face skin after hydration. Each values represents mean ± SD (before hydration vs after hydration, R7 parameter, *p < 0.05).
Table 1. The Comparison of the Changes of Elastic Parameters between Forearm and Face Skin of before Hydration under Different Suction Pressure
Table 2. The Difference (△) of Elasticity Parameters between before and after Hydration
Table 3. The Comparison of the Trend-line Slope on each Elastic Parameter between Forearm and Face Skin
참고문헌
- N. A. Fenske and C. W. Lober, Structural and functional changes of normal aging skin, J. Am. Acad. Dermatol., 15(4), 571 (1986). https://doi.org/10.1016/S0190-9622(86)70208-9
- L. Smith, Histopathologic characteristics and ultrastructure of aging skin, Cutis, 43, 414 (1989).
- M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Structural characteristics of the aging skin: a review, Cutan. Ocul. Toxicol., 26, 343 (2007). https://doi.org/10.1080/15569520701622951
- H. Sumino, S. Ichikawa, M. Abe, Y. Endo, O. Ishikawa, and M. Kurabayashi, Effects of aging, menopause, and hormone replacement therapy on forearm skin elasticity in women, J. Am. Geriatr. Soc., 945, 52 (2004).
- J. M. Waller and H. I. Maibach, Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity, Skin Res. Technol., 11, 221 (2005). https://doi.org/10.1111/j.0909-725X.2005.00151.x
- J. M. Waller and H. I. Maibach, Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure, Skin Res. Technol., 12, 145 (2006). https://doi.org/10.1111/j.0909-752X.2006.00146.x
- J. Fore, A review of skin and the effects of aging on skin structure and function, Ostomy Wound Manag., 52, 24 (2006).
- S. Diridollou, V. Vabre, M. Berson, L. Vaillant, D. Black, J. M. Lagarde, J. M. Gregoire, Y. Gall, and F. Patat, Skin ageing: changes of physical properties of human skin in vivo, Int. J. Cosmet. Sci., 23, 353 (2001). https://doi.org/10.1046/j.0412-5463.2001.00105.x
-
H. S. Ryu, Y. H. Joo, S. O. Kim, K. C. Park, and S. W. Youn, Influence of age and regional differences on skin elasticity as measured by the
$Cutometer^{(R)}$ , Skin Res. Technol., 14, 354 (2008). https://doi.org/10.1111/j.1600-0846.2008.00302.x - J. H. Chung, Photoaging in Asians, Photodermatol. Photoimmunol. Photomed., 19, 109 (2003). https://doi.org/10.1034/j.1600-0781.2003.00027.x
- M. Egawa and T. Kajikawa, Changes in the depth profile of water in the stratum corneum treated with water, Skin Res. Technol., 15, 242 (2009). https://doi.org/10.1111/j.1600-0846.2009.00362.x
- N. Nakagawa, M. Matsumoto, and S. Sakai, In vivo measurement of the water content in the dermis by confocal Raman spectroscopy, Skin Res. Technol., 16, 137 (2010). https://doi.org/10.1111/j.1600-0846.2009.00410.x
- A. Boehling, S. Bielfeldt, A. Himmelmann, M. Keskin, and K. P. Wilhelm, Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy, Skin Res. Technol., 20, 50 (2014). https://doi.org/10.1111/srt.12082
- H. Arimoto and M. Egawa, Imaging wavelength and light penetration depth for water content distribution measurement of skin, Skin Res. Technol., 21, 94 (2015). https://doi.org/10.1111/srt.12163