Figure 1. Efficacy of various 1,3-BG concentrations on the microbial counts in cosmetic cream. (a) S. aureus, (b) E. coli, (c) P. aeruginosa, (d) C. albicans, and (e) A. niger. NC (1,3-BG 0%); A (1,3-BG 5%); B (1,3-BG 10%); C (1,3-BG 15%); D (1,3-BG 20%); E (1,3-BG 25%).
Figure 2. Efficacy on microbial counts of adding phenoxyethanol and ethylhexylglycerin to cosmetic cream. (a) S. aureus, (b) E. coli, (c) P. aeruginosa, (d) C. albicans, and (e) A. niger. A (1,3-BG 5%); A-1 (ethylhexylglycerin 0.1%); A-2 (phenoxyethanol 0.3%); A-3 (ethylhexylglycerin 0.1% + phenoxyethanol 0.3%).
Figure 3. Efficacy on microbial counts for various alkanediol compositions. (a) S. aureus, (b) E. coli, (c) P. aeruginosa, (d) C. albicans, and (e) A. niger. A-1 (ethylhexylglycerin 0.1%), E-1 (ethylhexylglycerin 0.1% + 1,2-hexanediol 1%), E-2 (ethylhexylglycerin 0.1% + 1,2-pentanediol 1%), E-3 (ethylhexylglycerin 0.1% + 1,2-hexanediol 0.5% + 1,2-pentanediol 0.5%), E-4 (ethylhexylglycerin 0.1% + 1,2-hexanediol 0.7% + 1,2-pentanediol 0.7%), and E-5 (ethylhexylglycerin 0.1% + 1,2-hexanediol 1% + 1,2-pentanediol 1%).
Table 1. List of Strains and The Cultivation Conditions used for The Antimicrobial Experiments
Table 2. Formulations for The Testing of 1,3-BG
Table 3. Formulations Used for The Testing of Phenoxyethanol and Ethylhexylglycerin
Table 4. Formulations for The Testing of Alkanediols
Table 5. Log Reduction in Microbial Counts for Creams Containing Different 1,3-BG Concentrations
Table 6. Log Reduction in Microbial Counts for Creams Containing Phenoxyethanol and Ethylhexylglycerin
Table 7. Log Reduction in Microbial Counts for Creams with Different Alkanediol Compositions
참고문헌
- E. A. Grice and J. A. Segre, The skin microbiome, Nat. Rev. Microbiol., 9(4), 244 (2011). https://doi.org/10.1038/nrmicro2537
- B. Forslind, S. Engstrom, J. Engblom, and L. Norlen, A novel approach to the understanding of human skin barrier function, J. Dermatol. Sci., 14(2), 115 (1997). https://doi.org/10.1016/S0923-1811(96)00559-2
- R. R. Roth and W. D. James, Microbiology of the skin: resident flora, ecology, infection, J. Am. Acad. Dermatol., 20(3), 367 (1989). https://doi.org/10.1016/S0190-9622(89)70048-7
- D. H. Won, H. A. Gu, H. J. Kim, S. B. Han, J. Park, and S. N. Park, Antibacterial and antioxidative activities of Epimedium koreanum Nakai extracts, Microbiol. Biotechnol. Lett., 41(3), 284 (2013). https://doi.org/10.4014/kjmb.1212.12001
- P. Elsner, Antimicrobials and the skin physiological and pathological flora, Curr. Probl. Dermatol., 33, 35 (2006).
- H. J. Kim, J. Y. Bae, H. N. Jang, and S. N. Park, Comparative study on the antimicrobial activity of Glycyrrhiza uralensis and Glycyrrhiza glabra extracts with various countries of origin as natural antiseptics., Kor. J. Microbiol. Biotechnol., 41(3), 358 (2013). https://doi.org/10.4014/kjmb.1307.07003
- M. R. Kim, S. E. Woo, S. O. Shin, S. M. Hong, and S. Y. Yang, A Study on the distribution of Staphylococcus aureus in atopic dermatitis, J. Soc. Cosmet. Sci. Korea, 32(2), 93 (2006).
- K. Chiller, B. A. Selkin, and G. J. Murakawa, Skin microflora and bacterial infections of the skin, J. Investig. Dermatol. Symp. Proc., 6(3), 170 (2001). https://doi.org/10.1046/j.0022-202x.2001.00043.x
- R. A. Calderone and W. A. Fonzi, Virulence factors of Candida albicans, Trends. Microbiol., 9(7), 327 (2001). https://doi.org/10.1016/S0966-842X(01)02094-7
- M. G. Netea, G. D. Brown, B. J. Kullberg, and N. A. Gow, An integrated model of the recognition of Candida albicans by the innate immune system, Nat. Rev. Microbiol., 6(1), 67 (2008). https://doi.org/10.1038/nrmicro1815
- J. E. Ku, H. S. Han, and J. H. Song, The recent trend of the natural preservative used in cosmetics, Kor. J. Aesthet. Cosmetol., 11(5), 835 (2013).
- G. Alvarez-Rivera, T. De Miguel, M. Llompart, C. Garcia-Jares, T. G. Villa, and M. Lores, A novel outlook on detecting microbial contamination in cosmetic products: analysis of biomarker volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry, Anal. Methods-Uk, 5(2), 384 (2013). https://doi.org/10.1039/C2AY25833A
- E. Y. Choi, Effect of phenoxyethanol and alkane diol mixture on the antimicrobial activity and antiseptic ability in cosmetics, Kor. J. Aesthet. Cosmetol., 13(2), 213 (2015).
- L. F. Amaral, N. S. Camilo, M. D. Pereda, C. E. Levy, P. Moriel, and P. G. Mazzola, Evaluation of antimicrobial effectiveness of C-8 xylitol monoester as an alternative preservative for cosmetic products, Int. J. Cosmet. Sci., 33(5), 391 (2011). https://doi.org/10.1111/j.1468-2494.2010.00633.x
- E. Y. Lee, D. W. Choi, S. S. An, S. J. Moon, I. S. Chang, and H. C. Eun, A study of influencing factors for sensory irritation due to preservatives of cosmetics, J. Soc. Cosmet. Sci. Korea, 32(1), 65 (2006).
- M. D. Lundov, J. D. Johansen, C. Zachariae, and L. Moesby, Low-level efficacy of cosmetic preservatives, Int. J. Cosmet. Sci., 33(2), 190 (2011). https://doi.org/10.1111/j.1468-2494.2010.00619.x
- D. K. Brannan, Cosmetic preservation, J. Cosmet. Chem., 46(4), 199 (1995).
- M. D. Lundov, L. Moesby, C. Zachariae, and J. D. Johansen, Contamination versus preservation of cosmetics: a review on legislation, usage, infections, and contact allergy, Contact Dermatitis, 60(2), 70 (2009). https://doi.org/10.1111/j.1600-0536.2008.01501.x
- K. Yazar, S. Johnsson, M. L. Lind, A. Boman, and C. Liden, Preservatives and fragrances in selected consumer-available cosmetics and detergents, Contact Dermatitis, 64(5), 265 (2011). https://doi.org/10.1111/j.1600-0536.2010.01828.x
- J. Boberg, C. Taxvig, S. Christiansen, and U. Hass, Possible endocrine disrupting effects of parabens and their metabolites, Reprod. Toxicol., 30(2), 301 (2010). https://doi.org/10.1016/j.reprotox.2010.03.011
- A. C. de Groot and A. Herxheimer, Isothiazolinone preservative: cause of a continuing epidemic of cosmetic dermatitis, Lancet, 1(8633), 314 (1989).
- J. Y. Lee, J. N. Lee, G. T. Lee, and K. K. Lee, Development of antimicrobial plant extracts and its application to cosmetics, J. Soc. Cosmet. Sci. Korea, 38(2), 171 (2012). https://doi.org/10.15230/SCSK.2012.38.2.171
- T. Kinnunen and M. Koskela, Antibacterial and antifungal properties of propylene glycol, hexylene glycol, and 1,3-butylene glycol in vitro, Acta Derm. Venereol., 71(2), 148 (1991).
- I. K. Yoo, J. I. Kim, and Y. K. Kang, Conformational preferences and antimicrobial activities of alkanediols, Comput. Theor. Chem., 1064, 15 (2015). https://doi.org/10.1016/j.comptc.2015.04.007
- E. Lee, S. An, S. A. Cho, Y. Yun, J. Han, Y. K. Hwang, H. K. Kim, and T. R. Lee, The influence of alkane chain length on the skin irritation potential of 1,2-alkanediols, Int. J. Cosmet. Sci., 33(5), 421 (2011). https://doi.org/10.1111/j.1468-2494.2011.00646.x
- A. Kunicka-Styczynska, M. Sikora, and D. Kalemba, Antimicrobial activity of lavender, tea tree and lemon oils in cosmetic preservative systems, J. Appl. Microbiol., 107(6), 1903 (2009). https://doi.org/10.1111/j.1365-2672.2009.04372.x