DOI QR코드

DOI QR Code

장족형 탄화수소(n-alkane)의 탄소 안정동위원소비를 통한 과거 3만년 동안 한반도 남동해안의 고식생 및 고기후 복원

Paleovegetation and Paleoclimate Changes in Southeastern Part of the Korean Peninsula over the Last 30 kyr Inferred from Plant Wax Carbon Isotopes

  • 서연지 (한국해양과학기술원 대양자원연구센터) ;
  • 현상민 (한국해양과학기술원 관할해역지질연구단)
  • 투고 : 2018.10.29
  • 심사 : 2018.12.11
  • 발행 : 2018.12.30

초록

This study reconstructs past vegetation changes in southeastern Korea over the last 30 thousand years using plant waxes (i.e. long chain n-alkanes) and their carbon isotopic compositions (${\delta}^{13}C_{alk}$) preserved in marine sediment core (KIODP 12-1) retrieved from the East Sea. Here we show changes in vegetation composition in the Korean peninsula in relation to the strength of the East Asian Summer Monsoon. During the Last Glacial Maximum (LGM), when the summer monsoon weakened, precipitation decreased and $C_3$ grassland expanded. After the LGM, the summer monsoon gradually intensified, increasing rainfall, and thus expanding the forestland coverage. Precipitation climaxed from 10 to 6 kyr BP, which includes the Holocene Climate Optimum. The grassland began to expand since 5 kyr BP due to climate warming and drying towards the present. The ${\delta}^{13}C_{alk}$ values may also have been influenced by agricultural activities, which is known to have begun since the late Neolithic (ca. 7.0~3.0 kyr BP). Our results demonstrate how changes in the global climate state influence regional atmospheric circulation and precipitation distribution, and consequently terrestrial plant composition in southeastern Korea.

키워드

참고문헌

  1. Berner RA (1998) The carbon cycle and carbon dioxide over phanerozoic time: the role of land plants. Philos T Roy Soc B 353:75-82 https://doi.org/10.1098/rstb.1998.0192
  2. Bush RT, McInerney FA (2015) Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Org Geochem 79:65-73 https://doi.org/10.1016/j.orggeochem.2014.12.003
  3. Chang C, Kim C (1982) Late-quaternary vegetation in the lake of Korea. Kor J Bot 25:194-204
  4. Chikaraishi Y, Naraoka H (2007) ${\delta}^{13}C$ and ${\delta}D$ relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Org Geochem 38:198-215 https://doi.org/10.1016/j.orggeochem.2006.10.003
  5. Choi K-R, Kim K-H, Kim J-W, Kim J-C, Lee G-K, Yang D-Y, Nahm W-H (2005) Vegetation history since the mid-lateglacial from Yeongsan River basin, southwestern Korea. Kor J Ecol 28:37-43 https://doi.org/10.5141/JEFB.2005.28.1.037
  6. Chun J-H, Han S-J, Cheong D-K (1997) Tephrostratigraphy in the Ulleung Basin, East Sea: late Pleistocene to Holocene. Geosci J 1:154-166 https://doi.org/10.1007/BF02910207
  7. Chun J-H, Han S-J, Cheong D-K, Huh S, Bahk J-J, Choi D-L (1998) Tephrostratigraphy of deep-sea sediments around submarine channels, northeastern Ulleung Basin. J Geol Soc Kor 34:192-210
  8. Collister JW, Rieley G, Stern B, Eglinton G, Fry B (1994) Compound-specific ${\delta}^{13}C$ analyses of leaf lipids from plants with differing carbon dioxide metabolisms. Org Geochem 21:619-627 https://doi.org/10.1016/0146-6380(94)90008-6
  9. Coplen TB (2011) Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun Mass Sp 25:2538-2560 https://doi.org/10.1002/rcm.5129
  10. Coplen TB, Brand WA, Gehre M, Groning M, Meijer HA, Toman B, Verkouteren RM (2006) New guidelines for ${\delta}^{13}C$ measurements. Anal Chem 78:2439-2441 https://doi.org/10.1021/ac052027c
  11. Diefendorf AF, Freeman KH, Wing SL, Graham HV (2011) Production of n-alkyl lipids in living plants and implications for the geologic past. Geochim Cosmochim Ac 75:7472-7485 https://doi.org/10.1016/j.gca.2011.09.028
  12. Diefendorf AF, Freimuth EJ (2017) Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org Geochem 103:1-21 https://doi.org/10.1016/j.orggeochem.2016.10.016
  13. Diefendorf AF, Mueller KE, Wing SL, Koch PL, Freeman KH (2010) Global patterns in leaf $^{13}C$ discrimination and implications for studies of past and future climate. P Natl A Sci 107:5738-5743 https://doi.org/10.1073/pnas.0910513107
  14. Droxler AW, Schlager W (1985) Glacial versus interglacial sedimentation rates and turbidite frequency in the Bahamas. Geology 13:799-802 https://doi.org/10.1130/0091-7613(1985)13<799:GVISRA>2.0.CO;2
  15. Eglinton G, Hamilton R (1963) The distribution of alkanes. Chem Plant Taxono 187:217
  16. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322-1335 https://doi.org/10.1126/science.156.3780.1322
  17. Elsig J, Schmitt J, Leuenberger D, Schneider R, Eyer M, Leuenberger M, Joos F, Fischer H, Stocker TF (2009) Stable isotope constraints on Holocene carbon cycle changes from an Antarctic ice core. Nature 461:507-510 https://doi.org/10.1038/nature08393
  18. Feakins SJ, Levin NE, Liddy HM, Sieracki A, Eglinton TI, Bonnefille R (2013) Northeast African vegetation change over 12 my. Geology 41:295-298 https://doi.org/10.1130/G33845.1
  19. Freeman KH, Pancost RD (2014) Biomarkers for terrestrial plants and climate. In: Scott AE, Dominick AD (eds) Earth systems and environmental sciences. Springer, Amsterdam, pp 395-416
  20. Friedli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237-238 https://doi.org/10.1038/324237a0
  21. Fujiki T, Yasuda Y (2004) Vegetation history during the Holocene from Lake Hyangho, northeastern Korea. Quatern Int 123-125:63-69 https://doi.org/10.1016/j.quaint.2004.02.009
  22. Hayashi R, Takahara H, Tanida K, Danhara T (2009) Vegetation response to East Asian monsoon fluctuations from the penultimate to last glacial period based on a terrestrial pollen record from the inland Kamiyoshi Basin, western Japan. Palaeogeogr Palaeocl 284:246-256 https://doi.org/10.1016/j.palaeo.2009.10.004
  23. Heaton T, Blackwell P, Buck C (2009) A Bayesian approach to the estimation of radiocarbon calibration curves: the IntCal09 methodology. Radiocarbon 51:1151-1164 https://doi.org/10.1017/S0033822200034214
  24. Jang B-O, Yang D-Y, Kim J-Y, Choi K-R (2006) Postglacial vegetation history of the central western region of the Korean Peninsula. J Ecol Environ 29:573-580
  25. Jian Z, Wang P, Saito Y, Wang J, Pflaumann U, Oba T, Cheng X (2000) Holocene variability of the Kuroshio current in the Okinawa Trough, northwestern Pacific Ocean. Earth Planet Sc Lett 184:305-319 https://doi.org/10.1016/S0012-821X(00)00321-6
  26. Jo W (1979) Palynological studies on postglacial age in eastern coastal region, Korea peninsula. Ann Tohoku Geograph Asoc 31:23-35 https://doi.org/10.5190/tga1948.31.23
  27. Juliano BO (1985) Rice: chemistry and technology (Monograph Series 4). AACC, Minnesota, 371 p
  28. Jun C-P (2017) Palynology of the Quaternary sedimentary archives: marine sediments of the East Sea and guano deposits of carbonate caves, Korea. Ph.D. Thesis. Kyungpook National University, 130 p
  29. Jun CP, Yi S, Lee SJ (2010) Palynological implication of Holocene vegetation and environment in Pyeongtaek wetland, Korea. Quatern Int 227:68-74 https://doi.org/10.1016/j.quaint.2010.06.001
  30. Kim M-H, Han M-S, Kang K-K, Na Y-E, Bang H-S (2011) Effects of climate change on C 4 plant list and distribution in South Korea: a review. Kor J Agricult Forest Meteorol 13:123-139 https://doi.org/10.5532/KJAFM.2011.13.3.123
  31. Kump LR, Arthur MA (1999) Interpreting carbon-isotope excursions: carbonates and organic matter. Chem Geol 161:181-198 https://doi.org/10.1016/S0009-2541(99)00086-8
  32. Kutzbach JE, Street-Perrott FA (1985) Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317:130 https://doi.org/10.1038/317130a0
  33. Lee E, Yi S, Jo K-N, Kim Y (2017) Modern pollen morphological taxonomic characteristics of climate-sensitive species in Korean Peninsula. J Geol Soc Kor 53:833-844 https://doi.org/10.14770/jgsk.2017.53.6.833
  34. Lee KE (2007) Surface water changes recorded in Late Quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea). Palaeogeogr Palaeocl 247:18-31 https://doi.org/10.1016/j.palaeo.2006.11.019
  35. Leuenberger M, Siegenthaler U, Langway C (1992) Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357:488-490 https://doi.org/10.1038/357488a0
  36. Machida H, Arai F (1992) Atlas of Tephra in and around Japan. University of Tokyo press, Tokyo, 336 p
  37. Oba T, Kato M, Kitazato H, Koizumi I, Omura A, Sakai T, Takayama T (1991) Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceanography 6:499-518 https://doi.org/10.1029/91PA00560
  38. Pancost RD, Boot CS (2004) The palaeoclimatic utility of terrestrial biomarkers in marine sediments. Mar Chem 92:239-261 https://doi.org/10.1016/j.marchem.2004.06.029
  39. Park J, Park J, Yi S, Kim JC, Lee E, Jin Q (2018) The 8.2 ka cooling event in coastal East Asia: high-resolution pollen evidence from southwestern Korea. Scient Rep 8:12423 https://doi.org/10.1038/s41598-018-31002-7
  40. Park J, Yi S (2008) Postglacial environments of the Chungnam province inferred from pollen analysis: with emphasis of change in climate and vegetation together with human impact. J Paleontolog Soc Kor 24:e75
  41. Park J, Yu KB, Lim HS, Shin YH (2012) Holocene environmental changes on the east coast of Korea. J paleolimnol 48:535-544 https://doi.org/10.1007/s10933-012-9629-y
  42. Park M, Kim J, Kim I, Ryu B, Yu K (2005) Tephrostratigraphy and paleo-environmental implications of Late Quaternary sediments and interstitial water in the western Ulleung Basin, East/Japan Sea. Geo-Mar Lett 25:54-62 https://doi.org/10.1007/s00367-004-0203-0
  43. Reimer PJ, Baillie MG, Bard E, Bayliss A, Beck JW, Blackwell PG, Ramsey CB, Buck CE, Burr GS, Edwards RL (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51:1111-1150 https://doi.org/10.1017/S0033822200034202
  44. Smith HJ, Fischer H, Wahlen M, Mastroianni D, Deck B (1999) Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400:248 https://doi.org/10.1038/22291
  45. Tipple BJ, Meyers SR, Pagani M (2010) Carbon isotope ratio of Cenozoic $CO_2$: a comparative evaluation of available geochemical proxies. Paleoceanography 25:PA3202. doi:10.1029/2009PA001851
  46. Ujiie Y, Ujiie H, Taira A, Nakamura T, Oguri K (2003) Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21,000 years: evidence from planktonic foraminifera. Mar Micropaleontol 49:335-364 https://doi.org/10.1016/S0377-8398(03)00062-8
  47. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451:1090 https://doi.org/10.1038/nature06692
  48. Yasuda Y, Tsukada M, Kim J, Lee S, Yim Y (1980) The environment changes and the agriculture origin in Korea. Japanese Ministry of Education Overseas Research Reports 119, 256 p
  49. Yi S (2008) Palynological implication for environmental changes in the Hanam area, Gyeonggi Province since the Last Glacial Maximum. Jour Geol Soc Kor 44:673-684
  50. Yi S (2011) Holocene vegetation responses to East Asian monsoonal changes in South Korea. https://cdn.intechopen.com/pdfs/19840.pdf Accessed 3 Mar 2018
  51. Yi S, Yang D-Y, Jia H (2012) Pollen record of agricultural cultivation in the west-central Korean Peninsula since the Neolithic Age. Quatern Int 254:49-57 https://doi.org/10.1016/j.quaint.2011.10.012
  52. Yim Y-J, Kira T (1975) Distribution of forest vegetation and climate in the Korean peninsula.: I. Distribution of some indices of thermal climate. Jap J Ecol 25:77-88
  53. Yoon S-O, Kim H-R, Hwang S, Choi J (2012) Holocene vegetation and climatic change inferred from isopollen maps on the Korean Peninsula. Quatern Int 254:58-67 https://doi.org/10.1016/j.quaint.2011.03.005
  54. Yoon S, Moon Y, Hwang S (2008) Pollen analysis from the Holocene sediments of Lake Gyeongpo, Korea and its environmental implications. J Geolog Soc Kor 44:781-794
  55. Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279 https://doi.org/10.1038/nature06588
  56. Zhisheng A, Tunghseng L, Yanchou L, Porter S, Kukla G, Xihao W, Yingming H (1990) The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China. Quatern Int 7:91-95