DOI QR코드

DOI QR Code

Fabrication of CIGS/CZTS Thin Films Solar Cells by Non-vacuum Process

비진공 방법에 의한 CIGS/CZTS계 박막 태양전지 제조

  • Yoo, Dayoung (Department of Nano Fusion Technology, Pusan National University) ;
  • Lee, Dongyun (Department of Nano Fusion Technology, Pusan National University)
  • 유다영 (부산대학교 나노융합기술학과(대학원)) ;
  • 이동윤 (부산대학교 나노융합기술학과(대학원))
  • Received : 2018.09.03
  • Accepted : 2018.11.30
  • Published : 2018.12.27

Abstract

Inorganic semiconductor compounds, e.g., CIGS and CZTS, are promising materials for thin film solar cells because of their high light absorption coefficient and stability. Research on thin film solar cells using this compound has made remarkable progress in the last two decades. Vacuum-based processes, e.g., co-evaporation and sputtering, are well established to obtain high-efficiency CIGS and/or CZTS thin film solar cells with over 20 % of power conversion. However, because the vacuum-based processes need high cost equipment, they pose technological barriers to producing low-cost and large area photovoltaic cells. Recently, non-vacuum based processes, for example the solution/nanoparticle precursor process, the electrodeposition method, or the polymer-capped precursors process, have been intensively studied to reduce capital expenditure. Lately, over 17 % of energy conversion efficiency has been reported by solution precursors methods in CIGS solar cells. This article reviews the status of non-vacuum techniques that are used to fabricate CIGS and CZTS thin films solar cells.

Keywords

References

  1. Forecast International's Energy Potal, http://www.fipowerweb.com/Renewable-Energy.html
  2. H. Kim, Development of Materials for Solar Energy (III), KIER-B52464 (2015).
  3. Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%, Retrieved Dec. 2018 from http://www.solar-frontier.com/eng/news/2017/1220_press.html
  4. M. Kaelin, D. Rudmann and A. Tiwari, Solar Energy, 77, 749 (2004). https://doi.org/10.1016/j.solener.2004.08.015
  5. K. Yoon, Development of high-efficiency & low-cost CIGS TFSC material by chemical method. Report (2014).
  6. T. Ren, R. Yu, M. Zhong, J. Shi and C. Li, Sol. Energy Mater. Sol. Cells, 95, 510 (2011). https://doi.org/10.1016/j.solmat.2010.09.011
  7. C. Choi, H. Lee, H. Cha, J. Gwak, J. Yun, J. Kim, Y. Kim and D. Lee, J. Electrochem. Soc., 159, 1 (2012). https://doi.org/10.1149/2.037208jes
  8. H. Lee, W. Lee, J. Kim, M. Ko, K. Kim, K. Seo, K. Lee and H. Kim, Electrochimica Acta, 87, 450 (2013). https://doi.org/10.1016/j.electacta.2012.09.118
  9. R. S. Mane and C. D. Lokhande, Mater. Chem. Phys., 65, 1 (2000). https://doi.org/10.1016/S0254-0584(00)00217-0
  10. P. P. Hankare, K. C. Rathod, P. A. Chate, K. M. Garadker, D. J. Sathem and I. S. Mulla, J. Alloy. Compd., 511, 50 (2012). https://doi.org/10.1016/j.jallcom.2011.04.084
  11. L. P. Deshmukh, R. V. Suryawanshi, E. U. Masumdar and M. Sharon, Solar Energy, 86, 1910 (2012). https://doi.org/10.1016/j.solener.2012.02.033
  12. H. Yoon, J. Woo, B. Joshi, Y. Ra, S. Yoon, H. Kim, S. Ahn, J. Yun, J. Gwak, K. Yoon and S. C. James, J. Electrochem. Soc., 159, H444 (2012). https://doi.org/10.1149/2.jes113086
  13. H. Kuo, J. Tsai, A. Huang and W. Pan, Appl. Energy, 164, 1003 (2016). https://doi.org/10.1016/j.apenergy.2015.04.002
  14. T. Teodor and D. B. Mitzi, Eur. J. Inorg. Chem., 1, 17 (2010).
  15. H. Hahn, G. Frank, W. Klingler, A. Meyer, G. Storger and Z. Anorg, Allg. Chem., 271, 153 (1953). https://doi.org/10.1002/zaac.19532710307
  16. J. Kim, Ceramist, 13, 13 (2010).
  17. H. Jeong, Vacuum Magazine, 3, 29 (2016).
  18. A. Fernandez and R. Bhattacharya, Thin Solid Films, 474, 10 (2005). https://doi.org/10.1016/j.tsf.2004.02.104
  19. R. Bhattacharya, J. Electrochem. Soc., 157, D406 (2010). https://doi.org/10.1149/1.3427514
  20. D. Zhou, H. Zhu, X. Liang, C. Zhang, Z. Li, Y. Xu, J. Chen, L. Zhang and Y. Mai, Appl. Surf. Sci., 362, 202 (2016). https://doi.org/10.1016/j.apsusc.2015.11.235
  21. Y. Hwang, ReSEAT Program, KISTI (2013).
  22. T. Zhang, Y. Yang, D. Liu, S. C. Tse, W. Cao, Z. Feng, S. Chen and L. Qian, Energy Environ. Sci., 9, 3674 (2016). https://doi.org/10.1039/C6EE02352E
  23. S. M. McLeod, C. J. Hages, N. J. Carter and R. Agrawal, Prog. Photovolt: Res. Appl., 23, 1550 (2015). https://doi.org/10.1002/pip.2588
  24. K. Ito, T. Nakazawa, Jpn. J. Appl. Phys., 27, 2094 (1988). https://doi.org/10.1143/JJAP.27.2094
  25. Th. M. Friedlmeier, N. Wieser, Th. Walter, H. Dittrich and H. W. Schock, in Proceedings of the 14th European PVSEC and Exhibition, P4B.10 Barcelona, Spain (1997).
  26. K. A. W. Horowitz, R. Fu, and M. Woodhouse, Sol. Energy Mater. Sol. Cells 154, 1 (2016). https://doi.org/10.1016/j.solmat.2016.04.029
  27. K. Kim and J. Yun, KIC News 20(2), 1 (2017).
  28. A. Zegadi, M. A. Slifkin, M. Djamin, A. E. Hill and R. D. Tomlinson, Phys. Stat. Sol., 133, 533 (1992). https://doi.org/10.1002/pssa.2211330238
  29. A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger and A. N. Tiwari, Nat. Mater., 10, 857 (2011). https://doi.org/10.1038/nmat3122
  30. P. Baruch, A. De Vos, P. T. Landsberg, J. E. Parrott, Sol. Energy Mater Sol. Cells, 36, 201 (1995). https://doi.org/10.1016/0927-0248(95)80004-2
  31. C. S Choi, MS thesis (in Korean), Pusan National University (2013).
  32. H. Yoon, K. Park, J. Park, K. Kim, J. Lee, Y. Kim and D. Lee, J. Electron. Mater., 44, 4779 (2015). https://doi.org/10.1007/s11664-015-4042-8
  33. D. Lee, and Y. Kim, Patent 10-1603043 (2016).
  34. K. Park, J. Park, S. Park, D. Lee, D. Yoo, S. Shin, J. Gwak, Y. Kim and D. Lee, J. Mater. Sci., 52, 13533 (2017). https://doi.org/10.1007/s10853-017-1452-4
  35. D. Lincot, J. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert and J. Fauvarque, Solar Energy, 77, 725 (2004). https://doi.org/10.1016/j.solener.2004.05.024
  36. A. Fernandez and R. Bhattacharya, Thin Solid Films, 474, 10 (2005). https://doi.org/10.1016/j.tsf.2004.02.104
  37. O. Bamiduro, G. Chennamadhava, R. Mundle, R. Konda, B. Robinson, M. Bahoura and A. Pradhan, Solar Energy, 85, 545 (2011). https://doi.org/10.1016/j.solener.2010.12.025
  38. C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh and S. C. Liang, Solar Energy Mater. Solar Cells, 95, 261 (2011). https://doi.org/10.1016/j.solmat.2010.04.072
  39. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li and Y. Liu, Electrochim. Acta, 54, 3004 (2009). https://doi.org/10.1016/j.electacta.2008.12.016
  40. L. Kaupmees, M. Altosaar, O. Volubujeva and E. Mellikov, Thin Solid Films, 515, 5891 (2007). https://doi.org/10.1016/j.tsf.2006.12.088
  41. Y. P. Fu, R. W. You and K. K. Lew, J. Electrochem. Soc., 156, E133 (2009). https://doi.org/10.1149/1.3158558
  42. H. J Lee, H. J. Yoon, C. W. Ji, J. H. Yoon, D. Lee, J. H. Lee and Y. Kim, J. Electron. Mater., 41, 3375 (2012). https://doi.org/10.1007/s11664-012-2252-x
  43. C. J. Hibberd, E. Chassaing, W. Liu, D. B. Mitzi, D. Lincot and A. N. Tiwari, Prog. Photovolt: Res. Appl., 18, 434 (2010). https://doi.org/10.1002/pip.914
  44. B. Pamplin and R. S. Feigelson, Thin Solid Films, 60, 141 (1979). https://doi.org/10.1016/0040-6090(79)90184-6
  45. K. Kim, Y-J Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn, S. H. Park, K. Yoon and S. Ahn, J. Mater. Chem., 22, 8444 (2012). https://doi.org/10.1039/c2jm16555d
  46. S. Ahn, Y. J. Choi, K. Kim, Y. J. Eo, A. Cho, J. Gwak, J. H. Yun, K. Shin, S. K. Ahn and K. H. Yoon, ChemSusChem., 6, 1282 (2013). https://doi.org/10.1002/cssc.201200894
  47. S. Ahn, S. Rehan, D. G. Moon, Y-J Eo, S. Ahn, J. H. Yun, A. Cho and J. Gwak, Green. Chem., 19, 1268 (2017). https://doi.org/10.1039/C6GC03280J
  48. M. S. Tomar and F. J. Garcia, Thin Solid Films, 90, 419 (1982). https://doi.org/10.1016/0040-6090(82)90551-X
  49. C. R. Abernathy, C. W. Bates Jr, A. A. Anani, B. Haba and G. Smestad, Appl. Phy. Lett., 45, 890 (1984). https://doi.org/10.1063/1.95403
  50. M. Kaelin, H. Zogg, A. N. Tiwari, O. Wilhelm, S. E. Pratsinis, T. Meyer and A. Meyer, Thin Solid Films, 457, 391 (2004). https://doi.org/10.1016/S0040-6090(03)01033-2
  51. S. Merdes, M. Sugiyama, M. Sano, Z. Hadjoub, H. Nakanishi, and S. Ando, in Proceedings of the Twenty-First European Photovoltaic Solar Energy Conference, P.1870, Dresden, Germany (2006).
  52. S. Merdes, L. Bechiri, Z. Hadjoub, M. Sano and S, Ando, Physica Status Solidi C, 3, 2535 (2006). https://doi.org/10.1002/pssc.200669562
  53. W. Hirpo, S. Dhingra, A. C. Sutorik and M. G. Kanatzidis, J. Am. Chem. Soc., 115, 1597 (1993). https://doi.org/10.1021/ja00057a067
  54. O. Kluge, I. J-L. Plante, M. Diab, M. Volokh, A. Teitelboim and T. Mokari, J. Mater. Chem. C, 3, 4657 (2015). https://doi.org/10.1039/C4TC02842B
  55. D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel and A. Afzali, Nature, 428, 299 (2004). https://doi.org/10.1038/nature02389
  56. D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline and A. G. Schrott, Adv. Mater., 20, 3657 (2008). https://doi.org/10.1002/adma.200800555
  57. D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, L. Gignac and A. G. Schrott, Thin Solid Films, 517, 2158 (2009). https://doi.org/10.1016/j.tsf.2008.10.079
  58. D. B. Mitzi, Adv. Mater., 21, 3141 (2009). https://doi.org/10.1002/adma.200802027
  59. D. B. Mitzi, T. K. Todorov, O. Gunawan, M. Yuan, Q. Cao, W. Liu, K. B. Reuter, M. Kuwahara, K. Misumi, A. J. Kellock, S. J. Chey, T. G. de Monsabert, A. Prabhakar, V. Deline and K. E. Fogel, in Proceedings of the 35th IEEE Photovoltaic Specialists Conference, P.640, Honolulu, HI, 20-25 June (2010).
  60. A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haun, M. Kalin, D. Rudmann and A. N. Tiwari, Prog. Photovoltaics, 12, 93 (2004). https://doi.org/10.1002/pip.527
  61. A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler and A. N. Tiwari, Nat. Mater., 12, 1107 (2013). https://doi.org/10.1038/nmat3789
  62. Y. Bouznit, Y. Beggah, A. Boukerika, A. Lahreche and F. Ynineb, Appl. Surf. Sci., 284, 936 (2013). https://doi.org/10.1016/j.apsusc.2013.03.155
  63. N. Naghavi, S. Spiering, M. Powalla, B. Cavana and D. Lincot, Photovoltaics, 11, 437 (2003). https://doi.org/10.1002/pip.508
  64. F. Jiang, C. Ozaki, Gunawan, T. Harada, Z. Tang, T. Minetomo, Y. Nose and S. Ikeda, Chem. Mater., 28, 3283 (2016). https://doi.org/10.1021/acs.chemmater.5b04984
  65. T. Todorov, J. Carda, P. Escribano, A. Grimm, J. Klaer and R. Klenk, Sol. Energy Mater. Sol. Cells, 92, 1274 (2008). https://doi.org/10.1016/j.solmat.2008.04.022
  66. J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. Lee, W. Wang, H. Sugimoto and D. B. Mitzi, Adv. Mater., 26, 7427 (2014). https://doi.org/10.1002/adma.201402373
  67. P. O'Brien and J. McAleese, J. Mater. Chem., 8, 2309 (1998). https://doi.org/10.1039/a804692a
  68. C. J. Brinker, G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, p. 1, Academic Press (1990).
  69. K. Shin, H. Park, B. Kumar, K. Kim, S. Ihn and S. Kim, J. Mater. Chem., 21, 12274 (2011). https://doi.org/10.1039/c1jm10914f
  70. Y. Sun, J. Seo, C. J. Takacs, J. Seifter and A. J. Heeger, Adv. Mater., 23, 1679 (2011). https://doi.org/10.1002/adma.201004301
  71. G. Shanmuganathan, I. B. Shameem Banu, S. Krishnan and B. Ranganathan, J. Alloy. Compd., 562, 187 (2013). https://doi.org/10.1016/j.jallcom.2013.01.184
  72. S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 10, 013001 (2009). https://doi.org/10.1088/1468-6996/10/1/013001
  73. S. Merdes, F. Ziem, T. Lavrenko, T. Walter, I. Lauermann, M. Klingsporn, S. Schmidt, F. Hergert and R. Schlatmann, Prog. Photovoltaics, 23, 1493 (2015). https://doi.org/10.1002/pip.2579
  74. T. Shinagawa, S. Otomo, J. Katayama and M. Izaki, Electrochimica Acta, 53, 1170 (2007). https://doi.org/10.1016/j.electacta.2007.03.056
  75. M. Ravindiran and C. Praveenkumar, Renew. Sust. Energ. Rev., 94, 317 (2018). https://doi.org/10.1016/j.rser.2018.06.008
  76. K. J. Yang, D. H. Son, S. J. Sung, J. H. Sim, Y. I. Kim, S. N. Park, D. H. Jeon, J. Kim, D. K. Hwang, C. W. Jeon, D. Nam, H. Cheong, J. K. Kang and D. H. Kim, J. Mater. Chem. A, 4, 10151 (2016). https://doi.org/10.1039/C6TA01558A
  77. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, Sol. Energy Mater. Sol. Cells, 95, 1421 (2011). https://doi.org/10.1016/j.solmat.2010.11.028
  78. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater., 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
  79. S. Ikeda, W. Septina, Y. Lin, A. Kyoraiseki, T. Harada and M. Matsumura, Proceedings of 2013 International Renewable and Sustainable Energy Conference (IRSEC), 1 (2013).
  80. W. Septina, S. Ikeda, A. Kyoraiseki, T. Harada and M. Matsumura, Electrochim. Acta, 88, 436 (2013). https://doi.org/10.1016/j.electacta.2012.10.076
  81. T. H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada and S. Ikeda, RSC Adv., 5, 77565 (2015). https://doi.org/10.1039/C5RA13000J
  82. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu and D. B. Mitzi, Chem. Mater., 24, 4588 (2012). https://doi.org/10.1021/cm302881g
  83. W. Yang, H. S. Duan, K. C. Cha, C. J. Hsu, W. C. Hsu, H. Zhou, B. Bob and Y. Yang, J. Am. Chem. Soc., 135, 6915 (2013). https://doi.org/10.1021/ja312678c
  84. I. Kim, K. Kim, Y. Oh, K. Woo, G. Cao, S. Jeong and J. Moon, Chem. Mater., 26, 3957 (2014). https://doi.org/10.1021/cm501568d
  85. S. C. Riha, B. A. Parkinson and A. L. Prieto, J. AM. Chem. Soc., 131, 12054 (2009). https://doi.org/10.1021/ja9044168
  86. H. Du, F. Yan, M. Young, B. To, C-S Jiang, P. Dippo, D. Kuciauskas, Z. Chi, E. A. Lund, C. Hancock, W. M. Hlaing OO, M. A. Scarpulla and G. Teeter, J. Appl. Phys., 115, 173502 (2014). https://doi.org/10.1063/1.4871664
  87. E. A. Lund, H. Du, W. M. Hlaing OO, G. Teeter and M. A. Scarpulla, J. Appl. Phys., 115, 173503 (2014) https://doi.org/10.1063/1.4871665
  88. N. A. Kattan, I. J. Griffiths, D. Cherns and D. J. Fermin, Nanoscale, 8, 14369 (2016). https://doi.org/10.1039/C6NR04185J
  89. M. Ibanez, R. Zamani, A. LaLonde, D. Cadavid, W. Li, A. Shavel, J. Arbiol, J. R. Morante, S. Gorsse, G. J. Snyder and A. Cabot, J. Am. Chem. Soc., 134, 4060 (2012). https://doi.org/10.1021/ja211952z
  90. G. M. Ford, Q. Guo, R. Agrawal and H. W. Hillhouse, Chem. Mater., 23, 2626 (2011). https://doi.org/10.1021/cm2002836
  91. Q. Yi, J. Wu, J. Zhao, H. Wang, J. Hu, X. Dai and G. Zou, ACS Appl. Mater. Interfaces, 9, 1602 (2017). https://doi.org/10.1021/acsami.6b13683
  92. A. Guchhait, Z. Su, Y. Tay, S. Shukla, J. Tan, O. Gunawan and L. wong, ACS Energy Lett., 1, 1256 (2016). https://doi.org/10.1021/acsenergylett.6b00509
  93. Q. Chen, S. Cheng, S. Zhuang and X. Dou, Thin Solid Films, 520, 6256 (2012). https://doi.org/10.1016/j.tsf.2012.05.074
  94. W. Lee, J. Lee, W. Yi and S. Han, Adv. Mater., 22, 2264 (2010). https://doi.org/10.1002/adma.200903841
  95. W. Wang and K. Choy, ACS Appl. Mater. Interfaces, 8, 16640 (2016). https://doi.org/10.1021/acsami.6b02137