DOI QR코드

DOI QR Code

Stress Corrosion Cracking Sensitivity of High-Strength 2xxx Series Aluminum Alloys in 3.5 % NaCl Solution

항공용 고강도 2xxx계 알루미늄 합금의 3.5 % 염수 환경에서의 응력부식균열 민감도

  • Choi, Heesoo (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Lee, Daeun (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Ahn, Soojin (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University) ;
  • Lee, Cheoljoo (Structural Analysis Team, Korea Aerospace Industries, LTD.) ;
  • Kim, Sangshik (Dept. of Materials Engineering and Convergence Technology, ReCAPT, Gyeongsang National University)
  • 최희수 (경상대학교 나노신소재융합공학과) ;
  • 이다은 (경상대학교 나노신소재융합공학과) ;
  • 안수진 (경상대학교 나노신소재융합공학과) ;
  • 이철주 (한국항공우주산업 구조해석팀) ;
  • 김상식 (경상대학교 나노신소재융합공학과)
  • Received : 2018.08.18
  • Accepted : 2018.11.29
  • Published : 2018.12.27

Abstract

For the aerospace structural application of high-strength 2xxx series aluminum alloys, stress corrosion cracking(SCC) behavior in aggressive environments needs to be well understood. In this study, the SCC sensitivities of 2024-T62, 2124-T851 and 2050-T84 alloys in a 3.5 % NaCl solution are measured using a constant load testing method without polarization and a slow strain rate test(SSRT) method at a strain rate of 10-6 /sec under a cathodic applied potential. When the specimens are exposed to a 3.5 % NaCl solution under a constant load for 10 days, the decrease in tensile ductility is negligible for 2124-T851 and 2050-T84 specimens, proving that T8 heat treatment is beneficial in improving the SCC resistance of 2xxx series aluminum alloys. The specimens are also susceptible to SCC in a hydrogen-generating environment at a slow strain rate of $10^{-6}/sec$ in a 3.5 % NaCl solution under a cathodic applied potential. Regardless of the test method, low impurity 2124-T851 and high Cu/Mg ratio 2050-T84 alloys are found to have relatively lower SCC sensitivity than 2024-T62. The SCC behavior of 2xxx series aluminum alloys in the 3.5 % NaCl solution is discussed based on fractographic and micrographic observations.

Keywords

References

  1. T. Dursun and C. Soutis, Mater. Des., 56, 862 (2014). https://doi.org/10.1016/j.matdes.2013.12.002
  2. H. J. Liu, H. Fujii, M. Maeda and K. Nogi, J. Mater. Process. Tech., 142, 692 (2003). https://doi.org/10.1016/S0924-0136(03)00806-9
  3. A. A. Tiamuyu, R. Basu, A. G. Odeshi and J. A. Szpunar, Mater. Sci. Eng., A, 636, 379 (2015). https://doi.org/10.1016/j.msea.2015.03.113
  4. C. J. Lee, S. S. Park, S. J. Sin and Y. I. Jung, Aircraft Structure Design In Practice, p.47, G-WORLD, Korea (2017).
  5. V. Guillaumin and G. Mankowski, Corros. Sci., 41, 421 (1999).
  6. S. Mahmoud and K. Lease, Eng. Fract. Mech., 70, 443 (2003). https://doi.org/10.1016/S0013-7944(02)00130-3
  7. Y. J. Kim, J. K. Kwon, Y. I. Jeong, N. S. Woo and S. S. Kim, Met. Mater. Int., 19, 19 (2013). https://doi.org/10.1007/s12540-013-1004-7
  8. Y. C. Lin, Y. C. Xia, X. M. Chen and M. S. Chen, Comput. Mater. Sci., 50, 227 (2010). https://doi.org/10.1016/j.commatsci.2010.08.003
  9. Ph. Lequeu, K. P. Smith and A. Danie'lou, J. Mater. Eng. Perform., 19, 841 (2010). https://doi.org/10.1007/s11665-009-9554-z
  10. E. A. Starke, Jr, and J. T. Staley, Progr. Aero. Sci., 32, 131 (1996). https://doi.org/10.1016/0376-0421(95)00004-6
  11. H. Y. Li, Y. Tang, Z. D. Zeng and F. Zheng, Trans. Nonferrous Met. Soc. China, 18, 778 (2008). https://doi.org/10.1016/S1003-6326(08)60134-X
  12. R. G. Buchheit, R. P. Grant, P. F. Hlava, B. Mckenzie and G. L. Zender, J. Electrochem. Soc., 144, 2621 (1997). https://doi.org/10.1149/1.1837874
  13. C. Kumai, J. Kusinski, G. Thomas and T. M. Devine, Corrosion, 45, 294 (1969).
  14. D. McNaughtan, M. Worsfold and M. J. Robinson, Corros. Sci., 45, 2377 (2003). https://doi.org/10.1016/S0010-938X(03)00050-7
  15. K. Urushino and K. Sugimoto, Corros. Sci., 19, 225 (1979). https://doi.org/10.1016/0010-938X(79)90008-8
  16. S. Maitra, Corrosion, 37, 98 (1981). https://doi.org/10.5006/1.3593853
  17. D. Najjar, T. Magnin and T. J. Warner, Mater. Sci. Eng., A, 238, 293 (1997). https://doi.org/10.1016/S0921-5093(97)00369-9
  18. J. Woodtli and R. Kieselbach, Eng. Fail. Anal., 7, 427 (2000). https://doi.org/10.1016/S1350-6307(99)00033-3
  19. M. O. Speidel, Metall. Mater. Trans. A, 6, 631 (1975).
  20. J. Tao, Pierre et Marie Curie University, p. 9, Paris (2016).
  21. T. D. Burleigh, Corrosion, 47, 89 (1991). https://doi.org/10.5006/1.3585235
  22. H. J. Lee, Y. J. Kim, Y. I. Jeong and S. S. Kim, Corros. Sci., 55, 10 (2012). https://doi.org/10.1016/j.corsci.2011.09.021
  23. T. C. Tsai and T. H. Chuang, Mater. Sci. Eng., A, 225, 135 (1997). https://doi.org/10.1016/S0921-5093(96)10840-6
  24. R. S. Rana, R. Purohit and S. Das, Int. J. Sci. Res. Publ., 2, 1 (2012).
  25. N. J. Henry Holroyd and G. M. Scamans, Metall. Mater. Trans. A, 44, 1230 (2013). https://doi.org/10.1007/s11661-012-1528-3
  26. G. S. Chen, M. Gao and R. P. Wei, Corrosion, 52, 8 (1996). https://doi.org/10.5006/1.3292099
  27. K. Rajan, W. Wallace and J. C. Beddoes, J. Mater. Sci., 17, 2817 (1982). https://doi.org/10.1007/BF00644656
  28. G. S. Chen, M. Gao, R. P. Wei, Corros. Sci., 52, 8 (1996). https://doi.org/10.5006/1.3292099
  29. J. A. Taylor, Queensland University, p. 4, Brisbane (2004).
  30. M. Zeren, J. Mater. Process. Tech., 169, 292 (2005). https://doi.org/10.1016/j.jmatprotec.2005.03.009
  31. T. Warner, Mater. Sci. Forum., 519-521, 1271 (2006). https://doi.org/10.4028/www.scientific.net/MSF.519-521.1271
  32. A. A. El-Aty, Y. Xu, X. Z. Guo, S. H. Zhang, Y. Ma and D. Y. Chen, J. Adv. Res., 10, 49 (2018). https://doi.org/10.1016/j.jare.2017.12.004
  33. S. J. Ketcham, Corros. Sci., 7, 305 (1967). https://doi.org/10.1016/S0010-938X(67)80020-9
  34. X. X. Zhang, X. R. Zhou, T. Hashimoto, B. Liu, C. Luo, Z. H. Sun, Z. H. Tang, F. Lu and Y. L. Ma, Corros. Sci., 132, 1 (2018). https://doi.org/10.1016/j.corsci.2017.12.010